
Kraig Brockschmidt

Windows® 8 Apps
Programming

with HTML, CSS,
and JavaScript

SECOND
PREVIEW

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2012 Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7261-1

This document supports a preliminary release of a software product that may be changed substantially prior to
final commercial release. This document is provided for informational purposes only and Microsoft makes no
warranties, either express or implied, in this document. Information in this document, including URL and other
Internet website references, is subject to change without notice. The entire risk of the use or the results from
the use of this document remains with the user.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted in examples herein are fictitious. No association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be
inferred.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us
/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other
marks are property of their respective owners.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions, Developmental, and Project Editor: Devon Musgrave
Cover: Twist Creative • Seattle

Introduction ... 11

Who This Book Is For ... 12

What You'll Need .. 13

A Formatting Note.. 13

Acknowledgements .. 13

Errata & Book Support .. 14

We Want to Hear from You ... 15

Stay in Touch .. 15

Chapter 1: The Life Story of a WinRT App:

Platform Characteristics of Windows 8 .. 16
Leaving Home: Onboarding to the Store .. 17

Discovery, Acquisition, and Installation ... 20

Playing in Your Own Room: The App Container .. 23

Different Views of Life: View States and Resolution Scaling ... 27

Those Capabilities Again: Getting to Data and Devices ... 30

Taking a Break, Getting Some Rest: Process Lifecycle Management ... 33

Remembering Yourself: App State and Roaming ... 35

Coming Back Home: Updates and New Opportunities .. 39

And, Oh Yes, Then There’s Design ... 40

Chapter 2: Quickstart .. 42

A Really Quick Quickstart: The Blank App Template ... 42

Blank App Project Structure .. 45

QuickStart #1: Here My Am! and an Introduction to Blend for Visual Studio .. 50

Design Wireframes ... 50

Create the Markup ... 53

Styling in Blend ... 55

Adding the Code .. 59

Extra Credit: Receiving Messages from the iframe .. 71

The Other Templates ... 73

Fixed Layout Template .. 73

Navigation Template ... 74

3

Grid Template .. 74

Split Template .. 74

What We’ve Just Learned ... 75

Chapter 3: App Anatomy and Page Navigation ... 76
Local and Web Contexts within the App Host .. 77

Referencing Content from App Data: ms-appdata ... 81

Sequential Async Operations: Chaining Promises .. 84

Debug Output, Error Reports, and the Event Viewer ... 87

App Activation ... 89

Branding Your App 101: The Splash Screen and Other Visuals... 89

Activation Event Sequence .. 92

Activation Code Paths ... 93

WinJS.Application Events ... 95

Extended Splash Screens .. 97

App Lifecycle Transition Events and Session State ... 99

Suspend, Resume, and Terminate ...100

Basic Session State in Here My Am! ...104

Data from Services and WinJS.xhr ...106

Handling Network Connectivity (in Brief)...109

Tips and Tricks for WinJS.xhr ..109

Page Controls and Navigation ..111

WinJS Tools for Pages and Page Navigation ...111

The Navigation App Template, PageControl Structure, and PageControlNavigator112

The Navigation Process and Navigation Styles ..118

Optimizing Page Switching: Show-and-Hide ..120

Completing the Promises Story ..120

What We’ve Just Learned ...122

Chapter 4: Controls, Control Styling, and Data Binding 124
The Control Model for HTML, CSS, and JavaScript ..125

HTML Controls ...126

4

WinJS stylesheets: ui-light.css, ui-dark.css, and win-* styles ...129

Extensions to HTML Elements ..130

WinJS Controls ...130

WinJS Control Instantiation ...132

Strict Processing and processAll Functions ..133

Example: WinJS.UI.Rating Control ...134

Example: WinJS.UI.Tooltip Control..135

Working with Controls in Blend ...137

Control Styling ...139

Styling Gallery: HTML Controls ..141

Styling Gallery: WinJS Controls ..143

Some Tips and Tricks ...146

Custom Controls ..147

Custom Control Examples ...149

Custom Controls in Blend ..151

Data Binding ...154

Data Binding in WinJS ...157

Additional Binding Features..162

What We’ve Just Learned ...165

Chapter 5: Collections and Collection Controls .. 167

Collection Control Basics ..168

Quickstart #1: The HTML FlipView Control Sample ..168

Quickstart #2a: The HTML ListView Essentials Sample ...170

Quickstart #2b: The ListView Grouping Sample ...172

ListView in the Grid App Project Template ..177

The Semantic Zoom Control ...181

FlipView Features and Styling ...184

Data Sources ...187

A FlipView Using the Pictures Library ..187

Custom Data Sources ..189

5

How Templates Really Work..191

Referring to Templates ...191

Template Elements and Rendering...192

Template Functions (Part 1): The Basics ..193

ListView Features and Styling ..195

When Is ListView the Wrong Choice? ..195

Options, Selections, and Item Methods ..197

Styling ...200

Backdrops ..201

Layouts and Cell Spanning ..202

Optimizing ListView Performance ...208

Random Access ...209

Incremental Loading ..210

Template Functions (Part 2): Promises, Promises! ...210

What We’ve Just Learned ...216

Chapter 6: Layout.. 218
Principles of WinRT app Layout ...219

Quickstart: Pannable Sections and Snap Points ..223

Laying Out the Hub ...223

Laying Out the Sections..225

Snap Points ...225

The Many Faces of Your Display ..226

View States ..227

Screen Size, Pixel Density, and Scaling ..234

Adaptive and Fixed Layouts for Display Size ...238

Fixed Layouts and the ViewBox Control ...239

Adaptive Layouts ..241

Using the CSS Grid ..243

Overflowing a Grid Cell ..244

Centering Content Vertically ..245

6

Scaling Font Size ...246

Item Layout ...247

CSS 2D and 3D Transforms..247

Flexbox ...248

Nested and Inline Grids ..249

Fonts and Text Overflow ..250

Multicolumn Elements and Regions ...251

What We’ve Just Learned ...254

Chapter 7: Commanding UI ... 256

Where to Place Commands ...257

The App Bar ..261

App Bar Basics and Standard Commands ..263

App Bar Styling ..272

Command Menus ...274

Custom App Bars and Navigation Bars ...276

Flyouts and Menus..277

WinJS.UI.Flyout Properties, Methods, and Events ..279

Flyout Examples ..280

Menus and Menu Commands ..283

Message Dialogs ..288

Improving Error Handling in Here My Am! ..289

What We’ve Just Learned ...294

Chapter 8: State, Settings, Files, and Documents 295
The Story of State ..296

Settings and State ...298

App Data Locations ..299

AppData APIs (WinRT and WinJS) ...301

Using App Data APIs for State Management ..310

Settings Pane and UI ..316

Design Guidelines for Settings ...317

7

Populating Commands ...320

Implementing Commands: Links and Settings Flyouts ..321

User Data: Libraries, File Pickers, and File Queries ...326

Using the File Picker ..327

Media Libraries ..336

Documents and Removable Storage..337

Rich Enumeration with File Queries..338

Here My Am! Update ...344

What We’ve Just Learned ...344

Chapter 9: Input and Sensors .. 346

Touch, Mouse, and Stylus Input ...347

The Touch Language, Its Translations, and Mouse/Keyboard Equivalents ...348

What Input Capabilities Are Present? ..355

Unified Pointer Events ...357

Gesture Events ...360

The Gesture Recognizer ...369

Keyboard Input and the Soft Keyboard ...371

Soft Keyboard Appearance and Configuration ..371

Adjusting Layout for the Soft Keyboard ...374

Standard Keystrokes ..376

Inking ..377

Geolocation ...380

Sensors ..383

What We’ve Just Learned ...386

Chapter 10: Media .. 387
Creating Media Elements ...388

Graphics Elements: Img, Svg, and Canvas (and a Little CSS) ..390

Additional Characteristics of Graphics Elements ..393

Some Tips and Tricks ...394

Video Playback and Deferred Loading ..398

8

Disabling Screen Savers and the Lock Screen During Playback ..400

Video Element Extension APIs ..401

Applying a Video Effect ..402

Browsing Media Servers ...403

Audio Playback and Mixing ...403

Audio Element Extension APIs..405

Playback Manager and Background Audio ...406

Playing Sequential Audio ...410

Playlists ...411

Loading and Manipulating Media ...414

Media File Metadata ..414

Image Manipulation and Encoding ..423

Manipulating Audio and Video ...429

Media Capture ...433

Flexible Capture with the MediaCapture Object ..435

Selecting a Media Capture Device ..439

Streaming Media and PlayTo ..440

Streaming from a Server and Digital Rights Management (DRM) ...441

Streaming from App to Network ..442

PlayTo ...443

What We Have Learned ..446

Chapter 11: Purposeful Animations ... 448
Systemwide Enabling and Disabling of Animations ..450

The WinJS Animations Library ..451

Animations in Action ...454

CSS Animations and Transitions ...458

The Independent Animations Sample ...463

Rolling Your Own: Tips and Tricks ...464

What We’ve Just Learned ...469

Chapter 12: Contracts ... 470

9

Share ..472

Source Apps..474

Target Apps ..480

The Clipboard ..491

Search..493

Search in the App Manifest and the Search Item Template ...496

Basic Search and Search Activation ..496

Providing Query Suggestions ...499

Providing Result Suggestions ...503

Type to Search ...504

Launching Apps: File Type and URI Scheme Associations ...504

File Activation ..506

Protocol Activation ..508

File Picker Providers ...509

Manifest Declarations ..510

Activation of a File Picker Provider ...511

Cached File Updater ...518

Updating a Local File: UI ..521

Updating a Remote File: UI ...522

Update Events ..523

Contacts ...527

Using the Contact Picker ..529

Contact Picker Providers ..531

What We’ve Just Learned ...534

About the Author ... 536
Survey ... 537

10

Introduction

Welcome, my friends, to Windows 8! On behalf of the thousands of designers, program managers,

developers, test engineers, and writers who have brought the product to life, I'm delighted to welcome

you into a world of Windows Reimagined.

This theme is no mere sentimental marketing ploy, intended to bestow an aura of newness to

something that is essentially unchanged, like those household products that make a big splash on the

idea of "New and Improved Packaging!" No, Microsoft Windows truly has been reborn—after more

than a quarter-century, something genuinely new has emerged.

I suspect—indeed expect—that you're already somewhat familiar with the reimagined user

experience of Windows 8. You're probably reading this book, in fact, because you know that the ability

of Windows 8 to reach across desktop, laptop, and tablet devices, along with the global reach of the

Windows Store, will provide you with tremendous business opportunities, whether you're in business,

as I like to say, for fame, fortune, fun, or philanthropy.

We'll certainly see many facets of this new user experience throughout the course of this book. Our

primary focus, however, will be on the reimagined developer experience.

I don't say this lightly. When I first began giving presentations within Microsoft about building

WinRT apps, as they are called (and also referred to as Windows Store apps in consumer contexts), I

liked to show a slide of what the world was like in the year 1985. It was the time of Ronald Reagan,

Margaret Thatcher, and Cold War tensions. It was the time of VCRs and the discovery of AIDS. It was

when Back to the Future was first released, Michael Jackson topped the charts with Thriller, and Steve

Jobs was kicked out of Apple. And it was when software developers got their first taste of the original

Windows API and the programming model for desktop applications.

The longevity of that programming model has been impressive. It's been in place for over a

quarter-century now and has grown to become the heart of the largest business ecosystem on the

planet. The API itself, known today as Win32, has also grown to become the largest on the planet!

What started out on the order of about 300 callable methods has expanded three orders of magnitude,

well beyond the point that any one individual could even hope to understand a fraction of it. I'd

certainly given up such futile efforts myself.

So when I bumped into my old friend Kyle Marsh in the fall of 2009 just after Windows 7 had been

released and heard from him that Microsoft was planning to reinvigorate native app development for

Windows 8, my ears were keen to listen. In the months that followed I learned that Microsoft was

introducing a completely new API called the Windows Runtime (or WinRT). This wasn't meant to

replace Win32, mind you; desktop applications would still be supported. No, this was a programming

model built from the ground up for a new breed of touch-centric, immersive apps that could compete

with those emerging on various mobile platforms. It would be designed from the app developer's

11

point of view, rather than the system's, so that key features would take only a few lines of code to

implement rather than hundreds or thousands. It would also enable direct native app development in

multiple programming languages, which meant that new operating system capabilities would surface

to those developers without having to wait for an update to some intermediate framework.

This was very exciting news to me because the last time that Microsoft did anything significant to

the Windows programming model was in the early 1990s with a technology called the Component

Object Model (COM), which is exactly what allowed the Win32 API to explode as it did. Ironically, it was

my role at that time to introduce COM to the developer community, which I did through two editions

of Inside OLE (Microsoft Press) and seemingly endless travel to speak at conferences and visit partner

companies. History, indeed, does tend to repeat itself, for here I am again!

In December 2010, I was part of small team who set out to write the very first WinRT apps using

what parts of the new WinRT API had become available. Notepad was the text editor of choice, we

built and ran apps on the command line by using abstruse Powershell scripts that required us to

manually type out ungodly hash strings, we had no documentation other than functional

specifications, and we basically had no debugger to speak of other than the tried and true

document.writeln. Indeed, we generally worked out as much HTML, CSS, and JavaScript as we could

inside a browser with F12 debugging tools, only adding WinRT-specific code at the end because

browsers couldn't resolve those APIs. You can imagine how we celebrated when we got anything to

work at all!

Fortunately, it wasn't long before tools like Visual Studio Express and Blend for Visual Studio

became available. By the spring of 2011, when I was giving many training sessions to people inside

Microsoft on building WinRT apps, the process was becoming far more enjoyable and far, far more

productive. Indeed, while it took us some weeks in late 2010 to get even Hello World to show up on

the screen, by the fall of 2011 we were working with partner companies who pulled together complete

Store-ready apps in roughly the same amount of time.

As we've seen—thankfully fulfilling our expectations—it's possible to build a great WinRT app in a

matter of weeks. I'm hoping that this present volume, along with the extensive resources on

http://dev.windows.com, will help you to accomplish exactly that and to reimagine your own designs.

Who This Book Is For

This book is about writing WinRT apps using HTML5, CSS3, and JavaScript. Our primary focus will be on

applying these web technologies within the Windows 8 platform, where there are unique

considerations, and not on exploring the details of those web technologies themselves. For the most

part, then, I'm assuming that you're already at least somewhat conversant with these standards. We will

cover some of the more salient areas like the CSS grid, which is central to app layout, but otherwise I

trust that you're capable of finding appropriate references for everything else.

I'm also assuming that your interest in Windows 8 has at least two basic motivations. One, you

12

http://dev.windows.com/

probably want to come up to speed as quickly as you can, perhaps to carve out a foothold in the

Windows Store sooner rather than later. Toward that end, I've front-loaded the early chapters with the

most important aspects of app development along with "Quickstart" sections to give you immediate

experience with the tools, the API, and core platform features. On the other hand, you probably also

want to make the best app you can, one that performs really well and that takes advantage of the full

extent of the platform. Toward this end, I've also endeavored to make this book comprehensive,

helping you at least be aware of what's possible and where optimizations can be made.

Many insights have come from working directly with real-world developers on their real-world apps.

As part of the Windows Ecosystem team, myself and my teammates have been on the front lines

bringing those first apps to the Windows Store. This has involved writing bits of code for those apps

and investigating bugs, along with conducting design, code, and performance reviews with members

of the core Windows engineering teams. As such, one of my goals with this book is to make that deep

understanding available to many more developers, including you!

What You'll Need

To work through this book, you should download and install the latest developer build of Windows 8

along with the Windows SDK and tools. These, along with a number of other resources, are listed on

http://msdn.microsoft.com/en-us/windows/apps/br229516. I also recommend you visit

http://code.msdn.microsoft.com/windowsapps/Windows-8-Modern-Style-App-Samples and download

the entire set of JavaScript samples; we'll be using many of them throughout this book.

A Formatting Note

Throughout this book, identifiers that appear in code, such as variable names, property names, and API

functions and namespaces, are formatted with a color and a fixed-point font. Here’s an example:

Windows.Storage.ApplicationData.current. At times these fully qualified names—those that that

include the entire namespace—can become quite long, they are sometimes hyphenated across line

breaks, as in Windows.Security.Cryptography.CryptographicBuffer.convertStringToBinary.

Generally speaking, I’ve tried to hyphenate after a dot or between combined words but not within a

word (and, as you can see earlier in this paragraph, this doesn’t always work out). In any case, these

hyphens are never part of the identifier except when used in CSS where hyphens are allowed.

Acknowledgements

In many ways, this isn't my book—that is, it's not an account of my own experiences and opinions

about WinRT apps on Windows 8. I'm serving more as a storyteller, where the story itself has been

written by the thousands of people in the Windows team whose passion and dedication have been a

13

http://msdn.microsoft.com/en-us/windows/apps/br229516
http://code.msdn.microsoft.com/windowsapps/Windows-8-Modern-Style-App-Samples

constant source of inspiration. Writing a book like this wouldn't be possible without all the work that's

gone into customer research, writing specs, implementing, testing, and documenting all the details,

managing daily builds and public releases, and writing perhaps the best set of samples I've ever seen

for a platform. We'll be drawing on many of those samples, in fact, and even the words in some

sections come directly from conversations I've had with the people who designed and developed a

particular feature. I'm grateful for their time, and I’m delighted to give them a voice through which

they can share their passion for excellence with you.

A number of individuals deserve special mention for their long-standing support of this project. First

to Chris Sells, with whom I co-authored the earliest versions of this book; to Mahesh Prakriya, Ian

LeGrow, Anantha Kancherla, Keith Boyd and their respective teams, with whom I've worked closely; and

to Keith Rowe, Dennis Flanagan, and Ulf Schoo, under whom I've had the pleasure of serving. Thanks

also to Devon Musgrave at Microsoft Press, and to all those who have reviewed chapters and provided

answers to my endless streams of questions: Chris Tavares, Jesse McGatha, Josh Williams, Feras Moussa,

Jake Sabulsky, Henry Tappen, David Tepper, Mathias Jourdain, Ben Betz, Ben Srour, Adam Barrus, Ryan

Demopoulos, Sam Spencer, Damian Kedzierski, Bill Ticehurst, Tarek Anya, Scott Graham, Scott Dickens,

Jerome Holman, Kenichiro Tanaka, Sean Hume, Patrick Dengler, David Washington, Scott Hoogerwerf,

Harry Pierson, Jason Olson, Justin Cooperman, Rohit Pagariya, Nathan Kuchta, Kevin Woley, Markus

Mielke, Paul Gusmorino, Marc Wautier, Charing Wong, Chantal Leonard, Vincent Celie, Edgar Ruiz

Silva, Mike Mastrangelo, Derek Gephard, Tyler Beam, Adam Stritzel, Rian Chung, Shijun Sun, Dale

Rogerson, Megan Bates, Raymond Chen, Perumaal Shanmugam, Michael Crider, Axel Andrejs, Jake

Sabulsky, as well as those I've forgotten and those still to come as the last set of chapters are added to

the fnial edition. My direct teammates, Kyle Marsh, Todd Landstad, Shai Hinitz, Lora Heiny, and Joseph

Ngari have also been invaluable in sharing what they've learned in working with real-world partners.

Finally, special hugs to my wife Kristi and our young son Liam, who have lovingly been there the

whole time and who don't mind my traipsing through the house to my office either late at night or

early in the morning.

Errata & Book Support

We’ve made every effort to ensure the accuracy of this preview ebook and its companion content.

When the final version of this book is available (in fall 2012), any errors that are reported after the

book’s publication will be listed on our Microsoft Press site at oreilly.com. At that point, you can search

for the book at http://microsoftpress.oreilly.com and then click the “View/Submit Errata” link. If you

find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses above.

Support for developers, however, can be found on the Windows Developer Center’s support section.

14

http://microsoftpress.oreilly.com/
mailto:mspinput@microsoft.com
http://msdn.microsoft.com/en-US/windows/apps/hh690938

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset.

Please tell us what you think of this book at

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance for your

input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

15

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

Chapter 1

The Life Story of a WinRT App:

Platform Characteristics

of Windows 8

Paper or plastic? Fish or cut bait? To be or not to be? Standards-based or native? These are the

questions of our time….

Well, OK, maybe most of these aren’t the grist for university-level philosophy courses, but certainly

the last one has been increasingly important for app developers. Standards-based apps are great

because they run on multiple platforms; your knowledge and experience with standards like HTML5

and CSS3 are likewise portable. Unfortunately, because standards generally take a long time to

produce, they always lag behind the capabilities of the platforms themselves. After all, competing

platform vendors will, by definition, always be trying to differentiate! For example, while HTML5 now

has a standard for geolocation/GPS sensors and has started on working drafts for other forms of sensor

input (like accelerometers, compasses, near-field proximity, and so on), native platforms already make

these available. And by the time HTML’s standards are in place and widely supported, the native

platforms will certainly have added another set of new capabilities.

As a result, developers wanting to build apps around cutting-edge features—to differentiate from

their own competitors!—must adopt the programming language and presentation technology

imposed by each native platform or take a dependency on a third-party framework that tries to bridge

the differences.

Bottom line: it’s a hard choice.

Fortunately, Windows 8 provides what I personally think is a brilliant solution for apps. Early on, the

Windows team set out to solve the problem of making native capabilities—the system API, in other

words—directly available to any number of programming languages, including JavaScript. This is

what’s known as the Windows Runtime API, or just WinRT for short.

WinRT APIs are implemented according to a certain low-level structure and then “projected” into

different languages in a way that looks and feels natural to developers familiar with those languages.

This includes how objects are created, configured, and managed; how events, errors, and exceptions

are handled; how asynchronous operations work (to keep the user experience fast and fluid); and even

the casing of names on methods, properties, and events.

The Windows team also made it possible to write native apps that employ a variety of presentation

technologies, including DirectX, XAML, and, in the case of apps written in JavaScript, HTML5 and CSS3.

16

This means that Windows gives you—a developer already versed in HTML, CSS, and JavaScript

standards—the ability to use what you know to write fully native Windows 8 apps using the WinRT API.

Those apps will, of course, be specific to the Windows 8 platform, but the fact that you don’t have to

learn a completely new programming paradigm is worthy of taking a week off to celebrate—especially

because you won’t have to spend that week (or more) learning a complete new programming

paradigm!

Throughout this book we’ll explore how to leverage what you know of standards-based web

technologies to build great Windows 8 apps. In the next chapter we’ll focus on the basics of a working

app and the tools used to build it. Then we’ll look at fundamentals like the fuller anatomy of an app,

controls, collections, layout, commanding, state management, and input, followed by chapters on

media, animations, contracts through which apps work together, networking, devices, WinRT

components, and the Windows Store (a topic that includes localization and accessibility). There is much

to learn.

For starters, let’s talk about the environment in which apps run and the characteristics of the

platform on which they are built—especially the terminology that we’ll depend on in the rest of the

book (highlighted in italics). We’ll do this by following an app’s journey from the point when it first

leaves your hands, through its various experiences with your customers, to where it comes back home

for rest, renewal, and rebirth. For in many ways your app is like a child: you nurture it through all its

formative stages, doing everything you can to prepare it for life in the great wide world. So it helps to

understand the nature of that world!

Terminology note What we refer to as WinRT apps are those that are acquired from the Windows

Store and for which all the platform characteristics in this chapter (and book) apply. In consumer

contexts these are also known as Windows Store apps, but since we’re primarily interesting in how

they’re written—using the WinRT API—we’ll refer to them as WinRT apps. These are distinctly different

from traditional desktop applications that are acquired through regular retain channels and installed

through their own installer programs. Unless noted, then, an “app” in this book refers to a WinRT app.

Leaving Home: Onboarding to the Store

For WinRT apps, there’s really one port of entry into the world: customers always acquire, install, and

update apps through the Windows Store. Developers and enterprise users can side-load apps, but for

the vast majority of the people you care about, they go to the Windows Store and the Store alone.

This obviously means that an app—the culmination of your development work—has to get into the

Store in the first place. This happens when you take your pride and joy, package it up, and upload it to

the Store by using the Store/Upload App Package command in Visual Studio.1 The package itself is an

1 To do this you’ll need to create a developer account with the Store by using the Store/Open Developer Account command in

Visual Studio Express. Visual Studio Express and Expression Blend, which we’ll be using as well, are free tools that you can obtain

17

appx file (.appx)—see Figure 1-1—that contains your app’s code, resources, libraries, and a manifest.

The manifest describes the app (names, logos, etc.), the capabilities it wants to access (such as areas of

the file system or specific devices like cameras), and everything else that’s needed to make the app

work (such as file associations, declaration of background tasks, and so on). Trust me, we’ll become

great friends with the manifest!

FIGURE 1-1 An appx package is simply a zip file that contains the app’s files and assets, the app manifest, a

signature, and a sort of table-of-contents called the blockmap. When uploading an app, the initial signature is

provided by Visual Studio; the Windows Store will re-sign the app once it’s certified. The blockmap, for its part,

describes how the app’s files are broken up into 64K blocks. In addition to providing certain security functions (like

detecting whether a package has been tampered with) and performance optimization, the blockmap is used to

determine exactly what parts of an app have been updated between versions so the Windows Store only needs to

download those specific blocks rather than the whole app anew.

The upload process will walk you through setting your app’s name, choosing selling details

(including price tier, in-app purchases, and trial periods), providing a description and graphics, and also

providing notes to manual testers. After that, your app essentially goes through a series of job

interviews, if you will: background checks (malware scans and GeoTrust certification) and manual

testing by a human being who will read the notes you provide (so be courteous and kind!). Along the

way you can check your app’s progress through the Windows Store Dashboard.2

from http://dev.windows.com. This also works in Visual Studio Ultimate, the fuller, paid version of this flagship development

environment.
2 All of the automated tests except the malware scans are incorporated into the Windows App Certification Kit, affectionately

known as the WACK. This is part of the Windows SDK that is itself included with the Visual Studio Express/Expression Blend

18

http://msdn.microsoft.com/en-us/windows/apps/br216180
http://dev.windows.com/

The overarching goal with these job interviews (or maybe it’s more like getting through airport

security!) is to help users feel confident and secure in trying new apps, a level of confidence that isn’t

generally found with apps acquired from the open web. As all apps in the Store are certified, signed,

and subject to ratings and reviews, customers can trust all apps from the Store as they would trust

those recommended by a reliable friend. Truly, this is wonderful news for most developers, especially

those just getting started—it gives you the same access to the worldwide Windows market that has

been previously enjoyed only by those companies with an established brand or reputation.

It’s worth noting that because you set up pricing, trial versions, and in-app purchases during the

on-boarding process, you’ll have already thought about your app’s relationship to the Store quite a bit!

After all, the Store is where you’ll be doing business with your app, whether you’re in business for fame,

fortune, fun, or philanthropy.

As a developer, indeed, this relationship spans the entire lifecycle of an app—from planning and

development to distribution, support, and servicing. This is, in fact, why I’ve started this life story of an

app with the Windows Store, because you really want to understand that whole lifecycle from the very

beginning of planning and design. If, for example, you’re looking to turn a profit from a paid app or

in-app purchases, perhaps also offering a time-limited or feature-limited trial, you’ll want to engineer

your app accordingly. If you want to have a free, ad-supported app, or if you want to use a third-party

commerce solution for in-app purchases (bypassing revenue sharing with the Store), these choices also

affect your design from the get-go. And even if you’re just going to give the app away to promote a

cause or to just share your joy, understanding the relationship between the Store and your app is still

important. (For all these reasons, you might want to skip ahead read the first parts of Chapter 17,

"Apps for Everyone," before you start writing your app in earnest.)

Anyway, if your app hits any bumps along the road to certification, you’ll get a report back with all

the details, such as any violations of the Certification requirements for Windows apps (part of the

Windows Store agreements section). Otherwise, congratulations—your app is ready for customers!

Sidebar: The Store API and Product Simulator

The Windows.ApplicationModel.Store.CurrentProduct class in WinRT provides the ability for

apps to retrieve their product information from the store (including in-app purchases), check

license status, and prompt the user to make purchases (such as upgrading a trial or making an

in-app purchase).

Of course, this begs a question: how can an app test such features before it’s even in the

Store? The answer is that during development, you use these APIs through the

Windows.ApplicationModel.Store.CurrentProductSimulator class instead. This is entirely

identical to CurrentProduct except that it works against local data in an XML file rather than live

Store data in the cloud. This allows you to simulate the various conditions that your app might

download. If you can successfully run the WACK during your development process, you shouldn’t have any problem passing the

first stage of onboarding.

19

http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694082.aspx

encounter so that you can exercise all your code paths appropriately. Just before packaging your

app and sending it to the Store, you just change CurrentProductSimulator to CurrentProduct

and you’re good to go. (If you forget, the simulator will simply fail on a non-developer machine,

like those used by the Store testers.)

Discovery, Acquisition, and Installation

Now that your app is out in the world, its next job is to make itself known and attractive to potential

customers. Simply said, while consumers can find your app in the Windows Store through browsing or

search, you’ll still need to market your product as always. That’s one reality of the platform that

certainly hasn’t changed. That aside, even when your app is found in the Store it still needs to present

itself well to its suitors.

Each app in the Store has a product description page where people see your app description, screen

shots, ratings and reviews, and the capabilities your app has declared in its manifest, as shown in Figure

1-2. That last bit means you want to be judicious in declaring your capabilities. A music player app, for

instance, will obviously declare its intent to access the user’s music library but usually doesn’t need to

declare access to the pictures library unless it explains itself. Similarly, a communications app would

generally ask for access to the camera and microphone, but a news reader app probably wouldn’t. On

the other hand, an ebook reader might declare access to the microphone if it had a feature to attach

audio notes to specific bookmarks.

20

FIGURE 1-2 A typical app page in the Windows Store, where the manifest in the app package determines what

appears in the app permissions. Here, for example, PuzzleTouch’s manifest declares the Pictures Library, Webcam,

and Internet (Client) capabilities.

The point here is that what you declare needs to make sense to the user, and if there are any doubts

you should clearly indicate the features related to those declarations in your app’s description. (Note

how Puzzle Touch does that for the camera.) Otherwise the user might really wonder just what your

news reader app is going to do with the microphone and might opt for another app that seems less

intrusive.3

The user will also see your app pricing, of course, and whether you offer a trial period. Whatever the

case, if they choose to install the app (getting it for free, paying for it, or accepting a trial), your app

now becomes fully incarnate on a real user’s device. The appx package is downloaded to the device

and installed automatically along with any dependencies, such as the Windows Library for JavaScript

(see the sidebar on the next page.) As shown in Figure 1-3, the Windows deployment manager creates

a folder for the app, extracts the package contents to that location, creates appdata folders (local,

roaming, and temp, which the app can freely access, along with settings files for key-value pairs and

some other system-managed folders), and does any necessary fiddling with the registry to install the

app’s tile on the Start screen, create file associations, install libraries, and do all those other things that

are again described in the manifest. There are no user prompts during this process—especially not

those annoying dialogs about reading the licensing agreement!

3 The user always has the ability to disallow access to sensitive resources at run time for those apps that have declared the intent,

as we’ll see later. However, as those capabilities surface directly in the Windows Store, you want to be careful to not declare those

that you don’t really need.

21

FIGURE 1-3 The installation process for WinRT apps acquired from the Windows Store; the exact sequence is

unimportant.

In fact, licensing terms are integrated into the Store; acquisition of an app implies acceptance of

those terms. (However, it is perfectly allowable for apps to show their own license acceptance page on

startup, as well as require an initial login to a service if applicable.) But here’s an interesting point: do

you remember the real purpose of all those lengthy, annoyingly all-caps licensing agreements that we

all pretend to read? Almost all of them basically say that you can install the software on only one

machine. Well, that changes with WinRT apps: instead of being licensed to a machine, they are licensed

to the user, giving that user the right to install the app on up to five different devices.

In this way WinRT apps are a much more personal thing than desktop apps have traditionally been.

They are less general-purpose tools that multiple users share and more like music tracks or other

media that really personalize the overall Windows experience. So it makes sense that users can

replicate their customized experiences across multiple devices, something that Windows supports

through automatic roaming of app data and settings between those devices. (More on that later.)

In any case, the end result of all this is that the app and its necessary structures are wholly ready to

awaken on a device, as soon as the user taps a tile on the Start page or launches it through features

like Search and Share. And because the system knows about everything that happened during

installation, it can also completely reverse the process for a 100% clean uninstall—completely blowing

away the appdata folders, for example, and cleaning up anything and everything that was put in the

registry. This keeps the rest of the system entirely clean over time, even though the user may be

installing and uninstalling hundreds or thousands of apps. We like to describe this like the difference

between having guests in your house and guests in a hotel. In your house, guests might eat your food,

rearrange the furniture, break a vase or two, feed the pets leftovers, stash odds and ends in the backs

of drawers, and otherwise leave any number of irreversible changes in their wake (and you know

desktop apps that do this, I’m sure!). In a hotel, on the other hand, guests have access only to a very

small part of the whole structure, and even if they trash their room, the hotel can clean it out and reset

everything as if the guest was never there.

Sidebar: What Is the Windows Library for JavaScript?

The HTML, CSS, and JavaScript code in a WinRT app is only parsed, compiled, and rendered at

run time. (See the “Playing in Your Own Room: The App Container” section below.) As a result, a

number of system-level features for WinRT apps written in JavaScript, like controls, resource

management, and default styling, are supplied through the Windows Library for JavaScript, or

WinJS, rather than through the Windows Runtime API. This way, JavaScript developers see a

natural integration of those features into the environment they already understand, rather than

being forced to use different kinds of constructs.

WinJS, for example, provides an HTML implementation of a number of controls such that they

appear as part of the DOM and can be styled like any other intrinsic HTML controls. This is much

more natural for developers to work with than having to create an instance of some WinRT class,

22

bind it to an HTML element, and style it through code or some other markup scheme rather than

CSS. Similarly, WinJS provides an animations library built on CSS, rather than forcing developers

to learn some other structure to accomplish the same end. In both cases, WinJS provides a core

implementation of the Windows 8 user experience so that apps don’t have to figure out how to

re-create that experience themselves.

Generally speaking, WinJS is a toolkit that contains a number of independent capabilities that

can be used together or separately. So WinJS also provides helpers for common JavaScript

coding patterns, simplifying the definition of namespaces and object classes, handling of

asynchronous operations (that are all over WinRT) through promises, and providing structural

models for apps, data binding, and page navigation. At the same time, it doesn’t attempt to

wrap WinRT unless there is a compelling scenario where WinJS can provide real value. After all,

the mechanism through which WinRT is projected into JavaScript already translates WinRT

structures into those familiar to JavaScript developers.

All in all, WinJS is essential for and shared between every WinRT app written in JavaScript, and

it's automatically downloaded and updated as needed when dependent apps are installed. We’ll

see many of its features throughout this book.

Sidebar: Third-Party Libraries

WinJS is an example of a special shared library package that is automatically downloaded from

the Windows Store for dependent apps. Microsoft maintains a few of these in the Store so that

the package need be downloaded only once and then shared between apps. Shared third-party

libraries are not currently supported.

However, apps can freely use third-party libraries by bringing them into their own app

package, provided of course that the libraries use only the APIs available to WinRT apps. For

example, apps written in JavaScript can certainly use jQuery, Modernizer, Dojo, prototype.js,

Box2D, and others, with the caveat that some functionality, especially UI and script injection,

might not be supported. Apps can also use third-party binaries—known as WinRT

components—that are again included in the app package. Also see the "Hybrid Apps" sidebar

later in this chapter.

Playing in Your Own Room: The App Container

Now just as the needs of each day may be different when we wake up from our night’s rest, WinRT

apps can wake up—be activated—for any number of reasons. The user can, of course, tap or click the

app’s tile on the Start page. An app can also be launched in response to charms like Search and Share,

through file or protocol associations, and a number of other mechanisms. We’ll explore these variants

as we progress through this book. But whatever the case, there’s a little more to this part of the story

23

for apps written in JavaScript.

In the app’s hidden package folder are the same kind of source files that you see on the web: .html

files, .css files, .js files, and so forth. These are not directly executable like .exe files for apps written in

C#, Visual Basic, or C++, so something has to take those source files and produce a running app with

them. When your app is activated, then, what actually gets launched is that something: a special app

host process called wwahost.exe4, as shown in Figure 1-4.

FIGURE 1-4 The app host is an executable (wwahost.exe) that loads, renders, and executes HTML, CSS, and

JavaScript, in much the same way that a browser runs a web application.

The app host is more or less Internet Explorer 10 without the browser chrome—more in that your

app runs on top of the same HTML/CSS/JavaScript engines as Internet Explorer, less in that a number

of things behave differently in the two environments. For example:

 A number of methods in the DOM API are either modified or not available, depending on their

design and system impact. For example, functions that display modal UI and block the UI

thread are not available, like window.alert, window.open, and window.prompt. (Try

Windows.UI.Popups.MessageDialog instead for some of these needs.)

 The engines support additional methods, properties, and even CSS media queries that are

specific to being a app as opposed to a website. For example, special media queries apply to

4 “wwa” is an old acronym for WinRT apps written in JavaScript; some things just stick….

24

the different Windows 8 view states; see the next section. Elements like audio, video, and

canvas also have additional methods and properties. (At the same time, objects like MSApp and

methods like requestAnimationFrame that are available in Internet Explorer are also available

to WinRT apps.)

 The default page of a WinRT app written in JavaScript runs in what’s called the local context

wherein JavaScript code has access to WinRT, can make cross-domain XmlHttpRequests, and

can access remote media (videos, images, etc.). However, you cannot load remote script (from

http[s]:// sources, for example),5 and script is automatically filtered out of anything that might

affect the DOM and open the app to injection attacks (e.g., document.write and innerHTML

properties).

 Other pages in the app, as well as individual iframe elements within a local context page, can

run in the web context wherein you get web-like behavior (such as remote script) but don’t get

WinRT access nor cross-domain XHR (though you can use parts of WinJS that don’t rely on

WinRT). Web context iframes are generally used to host web controls on a locally packaged

page (like a map), as we’ll see in Chapter 2, "Quickstart," or to load pages that are directly

hosted on the web, while not allowing web pages to drive the app.

For full details, see HTML and DOM API changes list and HTML, CSS, and JavaScript features and

differences on the Windows Developer Center, http://dev.windows.com. As with the app manifest, you

should become good friends with the Developer Center.

Now all WinRT apps, whether hosted or not, run inside an environment called the app container.

This is an insulation layer, if you will, that blocks local interprocess communication and either blocks or

brokers access to system resources. The key characteristics of the app container are described next and

then illustrated in Figure 1-5:

 All WinRT apps (other than those that are built into Windows) run within a dedicated

environment that cannot interfere with or be interfered with other apps, nor can apps interfere

with the system.

 WinRT apps, by default, get unrestricted read/write access only to their specific appdata folders

on the hard drive (local, roaming, and temp). Access to everything else in the file system

(including removable storage) has to go through a broker. This gatekeeper, if you will, provides

access only if the app has declared the necessary capabilities in its manifest and/or the user has

specifically allowed it. (We’ll see the specific list of capabilities shortly.)

 WinRT apps cannot directly launch other apps by name or file path; they can programmatically

launch other apps through file or URI scheme associations. As these are ultimately under the

user’s control, there’s no guarantee that such an operation will start a specific app. However, we

do encourage app developers to use app-specific URI schemes that will effectively identify your

5 Note that it is allowable in the local context to eval JavaScript code obtained from remote sources through other means, such as

XHR. The restriction on directly loaded remote script is to specifically prevent cross-site scripting attacks.

25

http://msdn.microsoft.com/en-us/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465380.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465380.aspx
http://dev.windows.com/

specific app as a target. Technically speaking, another app could come along and register the

same URI scheme (thereby giving the user a choice), but this is unlikely with a URI scheme that’s

closely related to the app’s identity.

 Access to sensitive devices (like the camera, microphone, and GPS) is similarly controlled—the

WinRT APIs that work with those devices will simply fail if the broker blocks those calls. And

access to critical system resources, such as the registry, simply isn’t allowed at all.

 WinRT apps are isolated from one another to protect from various forms of attack. This also

means that some legitimate uses (like a snipping tool to copy a region of the screen to the

clipboard) cannot be written as a WinRT app (so they must be a desktop application).

 Direct interprocess communication between WinRT apps, between WinRT apps and desktop

applications, and between WinRT apps and local services, is blocked. Apps can still

communicate through the cloud (web services, sockets, etc.), and many common tasks that

require cooperation between apps—such as Search and Share—are handled through contracts

in which those apps don’t need to know any details about each other.

FIGURE 1-5 Process isolation for WinRT apps.

The upshot of all this is that the platform is intentionally designed to provide a particular user

experience through WinRT apps. This means that certain types of apps just won’t work as WinRT apps,

such as file system utilities, antivirus, many kinds of development tools, registry cleaners, and anything

else that can’t be written with the WinRT APIs (or the available subset of Win32 and .NET APIs; see the

next sidebar). In short, if there isn’t an available API for the functionality in question, that functionality

26

isn’t supported in the app container. Such apps must presently be written as desktop applications.

Sidebar: Hybrid Apps

WinRT apps written in JavaScript can only access WinRT APIs directly; apps or libraries written in

C#, Visual Basic, and C++ also have access to a small subset of Win32 and .NET APIs. (See Win32

and COM for WinRT apps.) Unfair? Not entirely, because you can write a WinRT component in

those other languages that can the surface functionality built with those other APIs to the

JavaScript environment (through the same projection mechanism that WinRT itself uses).

Because these components are also compiled into binary dynamic-link libraries (DLLs), they will

also typically run faster than the equivalent code written in JavaScript and also offer some

degree of intellectual property protection (e.g., hiding algorithms).

Such hybrid apps, as they’re called, thus use HTML/CSS for their presentation layer and some

app logic, and they place the most performance critical or sensitive code in compiled DLLs. The

dynamic nature of JavaScript, in fact, makes it a great language for gluing together multiple

components. We’ll see more in Chapter 16, "WinRT Components."

Different Views of Life: View States and Resolution Scaling

So, the user has tapped on an app tile, the app host has been loaded into memory, and it’s ready to

get everything up and running. What does the user see?

The first thing that becomes immediately visible is the app’s splash screen, which is described in its

manifest with an image and background color. This system-supplied screen guarantees that at least

something shows up for the app when it’s activated, even if the app completely gags on its first line of

code or never gets there at all. In fact, the app has 15 seconds to get its act together and display its

main window, or Windows automatically gives it the boot (terminates it, that is) if the user switches

away. This avoids having apps that hang during startup and just sit there like a zombie, where often the

user can only kill it off by using that most consumer-friendly tool, Task Manager. (Yes, I’m being

sarcastic—even though the Windows 8 Task Manager is in fact much more user-friendly.) Of course,

some apps will need more time to load, in which case you create an extended splash screen. This just

means making the initial view of your main window look the same as the splash screen so that you can

then overlay progress indicators or other helpful messages like “Go get a snack, friend, ‘cause yer

gonna be here a while!” Better yet, why not entertain your users so that they have fun with your app

even during such a process?

Now, when a normally launched app comes up, it has full command of the entire screen—well, not

entirely. Windows reserves a one pixel space along every edge of the display through which it detects

edge gestures, but the user doesn’t see that detail. Your app still gets to draw in those areas, mind you,

but it will not be able to detect pointer events therein. A small sacrifice for full-screen glory!

27

http://msdn.microsoft.com/en-us/library/windows/apps/br205757.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br205757.aspx

The purpose of those edge gestures—swipes from the edge of the screen toward the center—is to

keep both system chrome and app commands (like menus and other commanding UI) out of the way

until needed—an aspect of the design principle we call “content before chrome.” This helps keep the

user fully immersed in the app experience. To be more specific, the left and right edge gestures are

reserved for the system, whereas the top and bottom are for the app. Swiping up from the top or

bottom edges, as you’ve probably seen, brings up the app bar on the bottom of the screen where an

app places most of its commands, and possibly also a navigation bar on the top.

When running full-screen, the user’s device can be oriented in either portrait or landscape, and apps

can process various events to handle those changes. An app can also specify a preferred startup

orientation in the manifest and can also lock the orientation when appropriate. For example, a movie

player will generally want to lock into landscape mode such that rotating the device doesn’t change

the display. We’ll see all these layout details in Chapter 6, "Layout."

What’s also true is that your app might not always be running full-screen. In landscape mode, there

are actually three distinct view states that you need to be ready for with every page in the app:

full-screen, snapped, and filled. (See Figure 1-6.) These view states allow the user to split the screen into

two regions, one that’s 320 pixels wide along either the left or right side of the screen—the snap

region—and a second that occupies the rest—the fill region. In response to user actions, then, your app

might be placed in either region and must suck in its gut, so to speak, and adjust its layout

appropriately. Most of the time, running in “fill” is almost the same as running in full-screen, except

that the display area has slightly different dimensions and a different aspect ratio. Many apps will

simply adjust their layout for those dimensions; in some cases, like movies, they’ll just add a letterbox

or sidepillar region to preserve the aspect ratio of the content. Both approaches are just fine.

FIGURE 1-6 The four view states for WinRT apps; all pages within the app need to be prepared to show properly in

all four view states, a process that generally just involves visibility of elements and layout that can often be handled

entirely within CSS media queries.

28

When snapped, on the other hand, apps will often change the view of their content or its level of

detail. Horizontally oriented lists, for instance, are typically switched to a vertical orientation, with fewer

details. But don’t be nonchalant about this: you really want to consciously design snap views for every

page in your app and to design them well. After all, users like to look at things that are useful and

beautiful, and the more an app does this with its snap views, the more likely it is that users will keep

that app visible even while they’re working in another.

Another key point for snapping—and all the view states including portrait—is that they aren’t mode

changes. The system is just saying something like, “Please stand over here in this doorway, or please

lean sideways.” So the app should never change what it’s doing (like switching from a game board to a

high score list) when it’s snapped; it should just present itself appropriately for that position. For snap

view in particular, if an app can’t really continue to run effectively in snap, it should present a message

to that effect with an option to un-snap back to full screen. (There’s an API for that.)

Beyond the view states, an app should also expect to show itself in many sizes. It will be run on

many different displays, anywhere from 1024x768 (the minimum hardware requirement for Windows 8,

which also happens to be filled view size on 1366x768), all the way up to resolutions like 2560x1440.

The guidance here is that apps with fixed content (like a game board) will generally scale in size across

different resolutions, whereas apps with variable content (like a news reader) will generally show more

content. For more details, refer to Designing flexible layouts and Designing UX for apps.

It might also be true that you’re running on a high-resolution device that also has a very small

screen (high pixel density), like 10” screens with a 2560x1440 resolution. Fortunately, Windows does

automatic scaling such that the app still sees a 1366x768 display through CSS, JavaScript, and the

WinRT API. In other words, you almost don’t have to care. The only concern is bitmap (raster) graphics,

which need to accommodate those scales, as we’ll also see in Chapter 6.

As a final note, when an app is activated in response to a contract like Search or Share, its initial

view might not be the full window at all but rather its specific landing page for that contract that

overlays the current foreground app. We’ll see these details in Chapter 12, "Contracts."

Sidebar: Single-Page vs. Multipage Navigation

When you write a web application with HTML, CSS, and JavaScript, you typically end up with a

number of different HTML pages and navigate between them by using <a href> tags or by

setting document.location.

This is all well and good and works in a WinRT app, but it has several drawbacks. One is that

navigation between pages means reloading script, parsing a new HTML document, and parsing

and applying CSS again. Besides obvious performance implication, this makes it difficult to share

variables and other data between pages, as you need to either save that data in persistent

storage or stringify the data and pass it on the URI.

Furthermore, switching between pages is visually abrupt: the user sees a blank screen while

the new page is being loaded. This makes it difficult to provide a smooth, animated transition

29

http://msdn.microsoft.com/en-us/library/windows/apps/hh465386
http://msdn.microsoft.com/library/windows/apps/hh779072

between pages as generally seen within the Windows 8 personality—it’s the antithesis of “fast

and fluid” and guaranteed to make designers cringe.

To avoid these concerns, WinRT apps written in JavaScript are typically structured as a single

HTML page (basically a container div) into which different bits of HTML content, called page

controls in WinJS, are loaded into the DOM at runtime (similar to AJAX). This has the benefit of

preserving the script context and allows for transition animations through CSS and/or the WinJS

animations library. We’ll see the basics of page loading and navigation in Chapter 3, "App

Anatomy and Page Navigation."

Those Capabilities Again: Getting to Data and Devices

At run time, now, even inside the app container, the app has plenty of room to play and to delight

your customers. It can utilize many different controls, as we’ll see in Chapters 4 and 5, styling them

however it likes from the prosaic to the outrageous and laying them out on a page according to your

designer’s fancies (Chapter 6). It can work with commanding UI like the app bar (Chapter 7) and

receive and process pointer events, which unify touch, mouse, and stylus as shown in Chapter 9. (With

these input methods being unified, you can design for touch and get the others for free; input from

the physical and on-screen keyboards are likewise unified.). Apps can also work with sensors (Chapter

9), rich media (Chapter 10), animations (Chapter 11), contracts (Chapter 12), tiles and notifications

(Chapter 13), network communication (Chapter 14), and various devices and printing (Chapter 15). And

they can adapt themselves to different regional markets, provide accessibility, and work with various

monetization options like advertising, trial versions, and in-app purchases (Chapter 17).

Many of these features and their associated APIs have no implications where user privacy is

concerned, so apps have open access to them. These include controls, touch/mouse/stylus input,

keyboard input, and sensors (like the accelerometer, inclinometer, and light sensor). The appdata

folders (local, roaming, and temp) that were created for the app at installation are also openly

accessible. Other features, however, are again under more strict control. As a person who works

remotely from home, for example, I really don’t want my webcam turning on unless I specifically tell it

to—I may be calling into a meeting before I’ve had a chance to wash up! Such devices and other

protected system features, then, are again controlled by a broker layer that will deny access if (a) the

capability is not declared in the manifest, or (b) the user specifically disallows that access at run time.

Those capabilities are listed in the following table:

Capability Description Prompts for user consent

at run time

Internet (Client) Outbound access to the Internet and public networks (which No

30

includes making requests to servers and receiving information in

response).6

Internet (Client & Server) (superset of

Internet Client; only one needs to be

declared)

Outbound and inbound access to the Internet and public

networks (inbound access to critical ports is always blocked).

No

Private Networks

(Client & Server)

Outbound and inbound access to home or work intranets

(inbound access to critical ports is always blocked).

No

Document Library Read/write access to the user’s Documents area on the file

system for specifically declared file types. Requires a corporate

account in the Windows Store.

No

Music Library

Pictures Library

Video Library

Read/write access to the user’s Music/Pictures/Videos area on

the file system (all files).

No

Removable Storage Read/write access to files on removable storage devices for

specifically declared file types.

No

Microphone Access to microphone audio feeds (includes microphones on

cameras).

Yes

Webcam Access to camera audio/video/image feeds. Yes

Location (GPS) Access to the user’s location. Yes

Proximity The ability to connect to other devices through near-field

communication (NFC).

No

Enterprise Authentication Access to intranet resources that require domain credentials; not

typically needed for most apps. Requires a corporate account in

the Windows Store.

No

Shared User Certificates Access to software and hardware (smart card) certificates.

Requires a corporate account in the Windows Store.

Yes, in that the user must take

action to select a certificate,

insert a smart card, etc.

Note It is also possible for an app to declare access to ad-hoc devices by adding the appropriate

hardware class ID to the manifest. See Chapter 15, “Devices and Printing.”

When user consent is involved, calling an API to access the resource in question will prompt for user

consent, as shown in Figure 1-7 (from the app we’ll create in Chapter 2). If the user accepts, the API call

will proceed; if the user declines, the API call will return an error. Apps must accordingly be prepared

for such APIs to fail, and they must then behave accordingly.

FIGURE 1-7 A typical user consent dialog that’s automatically shown when an app first attempts to use a brokered

capability. This will happen only once within an app, but the user can control their choice through the Settings

charm for that app.

6 Note that network capabilities are not necessary to receive push notifications for “live tiles,” because those are received by the

system and not the app.

31

When you first start writing apps, really keep the manifest and these capabilities in mind—if you

forget one, you’ll see APIs failing even though all your code is written perfectly (or was copied from a

working sample). In the early days of building the first WinRT apps at Microsoft, we routinely forgot to

declare the Internet Client capability, so even things like getting to remote media with an img element

or making a simple call to a web service would fail. The support for alerting you if you’ve forgotten a

capability is much better now, but if you hit some mysterious problem with code that you’re sure

should work, especially in the wee hours of the night, check the manifest!

We’ll encounter many other sections of the manifest besides capabilities in this book. For example,

the documents library and removable storage capabilities both require you to declare the specific file

types for your app (otherwise access will generally be denied). The manifest also contains content URIs:

specific rules that govern which URIs are known and trusted by your app and can thus act on the app’s

behalf. The manifest is also where you declare things like your preferred orientation, background tasks

(like playing audio or handling real-time communication), contract behaviors (such as which page in

your app should be brought up in response to being invoked via a contract), custom protocols, and the

appearance of tiles and notifications. Like I said earlier, you and your app become real bosom buddies

with the manifest.

The last note to make about capabilities is that while programmatic access to the file system is

controlled by certain capabilities, the user can always point your app to other nonsystem areas of the

file system—and any type of file—from within the file picker UI. (See Figure 1-8.) This explicit user

action, in other words, is taken as consent for your app to access that particular file or folder

(depending on what you’re asking for). Once you’re app is given this access, you can use certain APIs to

record that permission so that you can get to those files and folders the next time your app is

launched.

In summary, the design of the manifest and the brokering layer is to ensure that the user is always in

control where anything sensitive is concerned, and as your declared capabilities are listed on your app’s

description page in the Windows Store, the user should never be surprised by your app’s behavior.

32

FIGURE 1-8 Using the file picker UI to access other parts of the file system from within a WinRT app, such as folders

on a drive root (but not protected system folders). This is done by tapping the down arrow next to “Files.”

Taking a Break, Getting Some Rest: Process Lifecycle

Management

Whew! We’ve covered a lot of ground already in this first chapter—our apps have been busy, busy,

busy, and we haven’t even started writing any code yet! In fact, apps can become really busy when

they implement certain sides of contracts. If an app declares itself as a Search, Share, Contact, or File

Picker source in its manifest (among other things), Windows will activate the app in response to the

appropriate user actions. For example, if the user invokes the Share charm and picks your app as a

Share target, Windows will activate the app with an indication of that purpose. In response, the app

displays its specific share UI or view—not the whole app—and when that task is complete, Windows

will shut your app down again (or send it to the background if it was already running) without the

need for additional user input.

This automatic shutdown or sending the app to the background are examples of automatic lifecycle

management for WinRT apps that helps conserve power and optimize battery life. One reality of life in

traditional multitasking operating systems is that users typically leave a bunch of apps running, all of

which consume power. This made sense with desktop apps because many of them can be at least

partially visible at once. But for WinRT apps, the system is boldly taking on the job itself and using the

full-screen nature of those apps to its advantage.

Apps typically need to be busy and active only when the user can see them (in whatever view state).

33

So when most apps are no longer visible, there is really little need to keep their engines running on

idle. It’s better to just turn them off, give them some rest, and let the visible apps utilize the system’s

resources.

So when an app goes to the background, Windows will automatically suspend it after about 5

seconds (according to the wall clock). The app is notified of this event so that it can save whatever state

it needs to (which I’ll describe more in the next section). At this point the app is still in memory, with all

its in-memory structures intact, but it will simply not be scheduled for any CPU time. (See Figure 1-9.)

This is very helpful for battery life because most desktop apps idle like a gasoline-powered car, still

consuming a little CPU in case there’s a need, for instance, to repaint a portion of a window. Because a

WinRT app in the background is completely obscured, it doesn’t need to do such small bits of work

and can be effectively frozen.

If the user then switches back to the app (in whatever view state, through whatever gesture), it will

be scheduled for CPU time again and resume where it left off (adjusting its layout for the view state, of

course). The app is also notified of this event in case it needs to re-sync with online services, update its

layout, refresh a view of a file system library, or take a new sensor reading because any amount of time

might have passed since it was suspended. Typically, though, an app will not need to reload any of its

own state because it was in memory the whole time.

FIGURE 1-9 Process lifetime states for WinRT apps.

There are a couple of exceptions to this. First, Windows provides a background transfer API—see

Chapter 14, “Networking”—to offload downloads and uploads from app code, which means apps don’t

have to be running for such transfers to happen. Apps can also ask the system to periodically update

live tiles on the Start page with data obtained from a service, or they can employ push notifications

(through the Windows Notification Service, WNS) so that they need not even be running for this

purpose—see Chapter 13, “Tiles, Notifications, the Lock Screen, and Background Tasks.” Second, certain

kinds of apps that do useful things when they’re not visible, such as audio players, communications

apps, or those that need to take action when specific system events occur (like a network change, user

login, etc.). With audio, as we’ll see in Chapter 10, “Media,” an app specifies background audio in its

manifest (where else!) and sets certain properties on the appropriate audio elements. With system

34

events, as we’ll also see in Chapter 13, an app declares background tasks in its manifest that are tied to

specific functions in their code. In both cases, then, Windows will not suspend the app when it’s in the

background, or it will wake the app from the suspended state when an appropriate trigger occurs.

Over time, of course, the user might have many WinRT apps in memory, and most of them will be

suspended and consume very little power. Eventually there will come a time when the foreground

app—especially one that’s just been launched—needs more memory than is available. In this case,

Windows will automatically terminate one or more apps, dumping them from memory. (See Figure 1-9

again.)

But here’s the rub: unless a user explicitly closes an app—by using Alt+F4 or a top-to-bottom swipe;

Windows Store policy specifically disallows apps with their own close commands or gestures—he or

she still rightly thinks that the app is running. So if the user activates it again (as from its tile), the user

will expect to return to the same place he or she left off. For example, a game should be in the same

place it was before (though automatically paused), a reader should be on the same page, and a video

should be paused at the same time. Otherwise, imagine the kinds of ratings and reviews your app will

be getting in the Windows Store!

So you might say, “Well, I should just save my app’s state when I get terminated, right?” Actually, no:

your app will not be notified when it’s terminated. Why? For one, it’s already suspended at that time, so

no code will run. In addition, if apps need to be terminated in a low memory condition, the last thing

you want is for apps to wake up and try to save state which might require even more memory! It’s

imperative, as hinted before, that apps save their state when being suspended and ideally even at

other checkpoints during normal execution. So let’s see how all that works.

Remembering Yourself: App State and Roaming

To step back for a moment, one of the key differences between traditional desktop applications and

WinRT apps is that the latter are inherently stateful. That is, once they’ve run the first time, they

remember their state across invocations (unless explicitly closed by the user or unless they provide an

affordance to reset the state explicitly). Some desktop applications work like this, but most suffer from

a kind of identity crisis when they’re launched. Like Gilderoy Lockhart in Harry Potter and the Chamber

of Secrets, they often start up asking themselves, “Who am I?”7 with no sense of where they’ve been or

what they were doing before.

Clearly this isn’t a good idea with WinRT apps whose lifetime is being managed automatically. From

the user’s point of view, apps are always running even if they’re not. It’s therefore critical that apps save

their state when being suspended, in case they get terminated, and that they reload that state if they’re

7 For those readers who have not watched this movie all the way through the credits, there’s a short vignette at the very end.

During the movie, Lockhart—a prolific, narcissistic, and generally untruthful autobiographer—loses his memory from a backfiring

spell. So in the vignette he’s shown in a straitjacket on the cover of his newest book, Who am I?

35

launched again after being terminated. (An app receives a flag on startup to indicate its previous

execution state, which determines what it should do with saved state. Details are in Chapter 3.)

There’s another dimension to statefulness too. Remember from earlier in this chapter that a user can

install the same WinRT app on up to five different devices? Well, that means that an app, depending

on its design of course, can also be stateful between those devices. That is, if a user pauses a video or a

game on one device or has made annotations to a book or magazine on one device, the user will

naturally want to be able to go to another device and pick up at exactly the same place.

Fortunately, Windows 8 makes this easy—really easy, in fact—by automatically roaming app

settings and state, along with Windows settings, between devices on which the user is logged in with

the same Microsoft account, as shown in Figure 1-10.

FIGURE 1-10 Automatic roaming of app roaming data (folder contents and settings) between devices.

They key here is understanding how and where an app saves its state. (We already know when.) If

you recall, there’s one place on the file system where an app has unrestricted access: its appdata folder.

Within that folder, Windows automatically creates subfolders named LocalState, RoamingState, and

TempState when the app is installed (I typically refer to them without the “State” appended.) The app

can programmatically get to any of these folders at any time and can create in them all the files and

subfolders to fulfill its heart’s desire. There are also APIs for managing individual Local and Roaming

settings (key-value pairs), along with groups of settings called composites that are always written to,

read from, and roamed as a unit. (These are useful when implementing the app’s Settings features for

the Settings charm, as covered in Chapter 8, “State, Settings, Files, and Documents.”)

36

Now, although the app can write as much as it wants to the app data areas (up to the capacity of

the file system), Windows will automatically roam the data in your roaming sections only if you stay

below an allowed quota (~100K, but there’s an API for that). If you exceed the limit, the data will still

be there but none of it will be roamed. Also be aware that cloud storage has different limits on the

length of filenames and file paths as well as the complexity of the folder structure. So keep your

roaming state small and simple; if the app needs to roam larger amounts of data, use a secondary web

service like SkyDrive. (See Chapter 8.)

So the app really needs to decide what kind of state is local to a device and what should be roamed.

Generally speaking, any kind of settings, data, or cached resources that are device-specific should

always be local (and Temp is also local), whereas settings and data that represent the user’s interaction

with the app are potential roaming candidates. For example, an email app that maintains a local cache

of messages would keep those local but would roam account settings (sans passwords) so that the user

has to configure the app on only one device. (It would probably also maintain a per-device setting for

how it downloads or updates emails so that the user can minimize network/radio traffic on a mobile

device.) A media player, similarly, would keep local caches that are dependent on the specific device’s

display characteristics, and it would roam playlists, playback positions, favorites, and other such settings

(should the user want that behavior, of course).

When state is roamed, know that there’s a simple “last writer wins” policy where collisions are

concerned. So, if you run the same app on two devices at the same time, don’t expect there to be any

fancy merging or swapping of state. After all kinds of tests and analysis, Microsoft’s engineers finally

decided that simplicity was best!

Along these same lines, I'm told that if a user installs an app, roams some settings, uninstalls the

app, then within some "reasonable time" reinstalls the app, the user will find that those settings are still

in place. This makes sense, because it would be too draconian to blow away roaming state in the cloud

the moment a certain user just happened to uninstall an app on all their devices. There's no guarantee

of this behavior, mind you, but Windows will apparently retain roaming state for an app for some time

at least.

Sidebar: Local vs. Temp Data

For local caching purposes, an app can use either local or temp storage. The difference is that

local data will always be under the explicit control of the app. Temp data, on the other hand, can

be deleted if the user runs the Disk Cleanup utility. Local data is thus best used to support an

app’s functionality, and temp data is used to support run-time optimization at the expense of

disk space.

For WinRT apps written in HTML and JavaScript, you can also use existing caching

mechanisms like HTML5 local storage, IndexedDB, app cache, and so forth. All of these will be

stored within the app’s LocalState folder.

37

Sidebar: The Opportunity of Per-User Licensing and Data Roaming

Details aside, I personally find the cross-device roaming aspect of the platform very exciting,

because it enables the developer to think about apps as something beyond a single-device or

single-situation experience. As I mentioned earlier, a user’s collection of apps is highly personal

and it personalizes the device; apps themselves are licensed to the user and not the device. In

that way, we as developers can think about each app as something that projects itself

appropriately onto whatever device and into whatever context it finds itself. On some devices it

can be oriented for intensive data entry or production work, while on others it can be oriented

for consumption or sharing. The end result is an overall app experience that is simply more

present in the user’s life and appropriate to each context.

An example scenario is illustrated in Figure 1-11, where an app can have different

personalities or flavors depending on user context and how different devices might be used in

that context. It might seem rather pedestrian to think about an app for meal planning, recipe

management, and shopping lists, but that’s something that happens in a large number of

households worldwide. Plus it’s something that my wife would like to see me implement if I

wrote more code than text!

This, to me, is the real manifestation of the next era of personal computing, an era in which

personal computing expands well beyond, yet still includes, a single device experience. Devices

are merely viewports for your apps and data, each viewport having a distinct role in the larger

story of how your move through and interact with the world at large.

38

Coming Back Home: Updates and New Opportunities

If you’re one of those developers that can write a perfect app the first time, I have to ask why you’re

actually reading this book! Fact of the matter is that no matter how hard we try to test our apps before

they go out into the world, our efforts pale in comparison to the kinds of abuse that customers will

heap on them. To be more succinct: expect problems. An app might crash under circumstances we

never predicted, or there just might be usability problems because people are finding creative ways to

use the app outside of its intended purpose.

Fortunately, the Windows Store dashboard—go to http://dev.windows.com and click the Dashboard

tab at the top—makes it easy for you get the kind of feedback that has traditionally been very difficult

to obtain. For one, the Store maintains ratings and reviews for every app, which will be a source of

valuable insight into how well your app fulfills its purpose in life and a source of ideas for your next

release. And you might as well accept it now: you’re going to get praise (if you’ve done a decent job),

and you’re going to get criticism, even a good dose of nastiness (even if you’ve done a decent job!).

Don’t take it personally—see every critique as an opportunity to improve, and be grateful that people

took the time to give feedback. As a wise man once said upon hearing of the death of his most vocal

critic, “I’ve just lost my best friend!”

The Store will also provide you with crash analytics so that you can specifically identify problem

areas in your app that evaded your own testing. This is incredibly valuable—if you’re not already

clapping your hands in delight!—because if you’ve ever wanted this kind of data before, you’ve had to

implement the entire mechanism yourself. No longer. This is one of the valuable services you get in

exchange for your annual registration with the Store. (Of course, you can still implement your own

too.)

With this data in hand and all the other ideas you either had to postpone from your first release or

dreamt up in the meantime, you’re all set to have your app come home for some new love before its

next incarnation.

Updates are onboarded to the Windows Store just like the app’s first version. You create and upload

an app package (with the same package name as before but a new version number), and then you

update your description, graphics, pricing, and other information. After that your updated package

goes through the same certification and signing process as before, and when all that’s complete your

new app will be available in the Store. Those customers who already have your app will also be notified

that there’s an update, which they can choose to install or not. (And remember that with the blockmap

business described earlier, only those parts of the app that have actually changed will be downloaded

for an update. This means that issuing small fixes won’t force users to repeat potentially large

downloads each time, bringing the update model closer to that of web applications.)

When a user installs an update that has the same package name as an existing app, note that all the

settings and appdata for the prior version remain intact. Your updated app should be prepared, then,

to migrate a previous version of its state if and when it encounters such.

39

http://dev.windows.com/

This brings up an interesting question: what happens with roaming data when a user has different

versions of the same app installed on multiple devices? The answer is twofold: first, roaming data has

its own version number independent of the app, and second, Windows will transparently maintain

multiple versions of the roaming state so long as there are apps installed on the user’s devices that

reference those state versions. Once all the devices have updated apps and have converted their state,

Windows will delete old versions.

Another interesting question with updates is whether you can get a list of the customers who have

acquired your app from the Store. The answer is no, because of privacy considerations. However, there

is nothing wrong with including a registration feature in your app through which users can opt in to

receive additional information from you, such as more detailed update notifications. Your Settings

panel is a great place to include this.

The last thing to say about the Store is that in addition to analytics about your own app—which also

includes data like sales figures, of course—it also provides you with marketwide analytics. These help

you explore new opportunities to pursue—maybe taking an idea you had for a feature in one app and

breaking that out into a new app in a different category. Here you can see what’s selling well (and

what’s not) or where a particular category of app is underpopulated or generally has less than average

reviews. For more details, again see the Dashboard at http://dev.windows.com.

And, Oh Yes, Then There’s Design

In this first chapter we’ve covered the nature of the world in which WinRT apps live and operate. In this

book, too, we’ll be focusing on the details of how to build such apps with HTML, CSS, and JavaScript.

But what we haven’t talked about, and what we’ll only be treating minimally, is how you decide what

your app does—its purpose in the world!—and how it clothes itself for that purpose.

This is really the question of good design for WinRT apps—all the work that goes into apps before

we even start writing code.

I said that we’ll be treating this minimally because I simply do not consider myself a designer. I

encourage you to be honest about this yourself: if you don’t have a good designer working with you,

get one. Sure, you can probably work out an OK design on your own, but the demands of a

consumer-oriented market combined with a newer design language like that employed in Windows

8—where the emphasis is on simplicity and tailored experiences—underscores the need for

professional help. It’ll make the difference between a functional app and a great app, between a tool

and a piece of art, between apps that consumers accept and those they love.

With design, I do encourage developers to peruse the material on Designing UX for apps for a

better understanding of design principles. But let’s be honest: as a developer, do you really want to

ponder what “fast and fluid” means? Do you want to spend your time in graphic design and artwork

(which is essential for a great app)? Do you want to haggle over the exact pixel alignment of your

layout in all four view states? If not, find someone who does, because the combination of their design

40

http://dev.windows.com/
http://msdn.microsoft.com/library/windows/apps/hh779072

sensibilities and your highly productive hacking will produce much better results than either of you

working alone. As one of my co-workers puts it, a marriage of “freaks” and “geeks” often produces the

most creative, attractive, and inspiring results.

Let me add that design is neither a one-time nor a static process. Developers and designers will

need to work together throughout the development experience, as design needs will arise in response

to how well the implementation really works. For example, the real-world performance of an app

might require the use of progress indicators when loading certain pages or might be better solved with

a redesign of page navigation. It may also turn out, as we found with one of our early app partners,

that the kinds of graphics called for in the design simply weren’t available from the app’s back-end

service. The design was lovely, in other words, but couldn’t actually be implemented, so a design

change was necessary. So make sure that your ongoing relationship with your designers is a healthy

and happy one. And on that note, let’s get into your part of the story: the coding!

41

Chapter 2

Quickstart

This is a book about developing apps. So, to quote Paul Bettany’s portrayal of Geoffrey Chaucer in A

Knight’s Tale, “without further gilding the lily, and with no more ado,” let’s create some!

A Really Quick Quickstart: The Blank App Template

We must begin, of course, by paying due homage to the quintessential “Hello World” app, which we

can achieve without actually writing any code at all. We simply need to create a new app from a

template in Visual Studio:

1. Run Visual Studio Express. If this is your first time, you’ll be prompted to obtain a developer

license. Do this, because you can’t go any further without it!

2. Click New Project… in the Visual Studio window.

3. In the dialog that appears (Figure 2-1), make sure you select JavaScript under Templates on the

left side, and then select Blank Application in the middle. Give it a name (HelloWorld will do), a

folder, and click OK.

FIGURE 2-1 Visual Studio’s New Project dialog using the light UI theme. (See the Tools > Options menu

command, and then change the theme in the Environment/General section).

42

4. After Visual Studio churns for a bit to create the project, click the Start Debugging button (or

press F5, or select the same command from the Debug menu). Assuming your installation is

good, you should see something like Figure 2-2 on your screen.

FIGURE 2-2 The only vaguely interesting portion of the Hello World app’s display. The message is at least a

better invitation to write more code than the standard first-app greeting!

By default, Visual Studio starts the debugger in local machine mode, which runs the app full screen

on your present system. This has the unfortunate result of hiding the debugger unless you’re on a

multimonitor system, in which case you can run Visual Studio on one monitor and your WinRT app on

the other. Very handy. See http://msdn.microsoft.com/en-us/library/windows/apps/hh441483.aspx for

more on this.

Visual Studio also offers two other debugging modes available from the drop-down list on the

toolbar (Figure 2-3) or the Debug/[Appname] Properties menu command (Figure 2-4):

FIGURE 2-3 Visual Studio’s debugging options on the toolbar.

43

http://msdn.microsoft.com/en-us/library/windows/apps/hh441483.aspx

FIGURE 2-4 Visual Studio’s debugging options in the app properties dialog.

The Remote Machine option allows you to run the app on a separate device, which is absolutely

essential for working with devices that can’t run desktop apps at all. We won’t cover this topic in this

book, but it’s straightforward; see Running WinRT apps on a remote machine for details. Also, when

you don’t have a project loaded in Visual Studio, the Debug menu offers the Attach To Process

command, which allows you to debug an already-running app. For this I defer once more to the

documentation: How to start a debugging session (JavaScript).

The Simulator is also very interesting, really the most interesting option in my mind and a place I

imagine you’ll be spending plenty of time. It duplicates your environment inside a new login session

and allows you to control device orientation, set various screen resolutions (and scaling factors),

simulate touch events, and control the data returned by geolocation APIs. Figure 2-5 shows Hello

World in the simulator with the additional controls labeled. We’ll see more of the simulator as we go

along, though you may also want to peruse the Running WinRT apps in the simulator topic.

44

http://msdn.microsoft.com/en-us/library/windows/apps/hh441469.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh771032.aspx
http://msdn.microsoft.com/library/windows/apps/hh441475.aspx

FIGURE 2-5 Hello World running in the simulator, with labels on the right for the simulator controls. Truly, the

“Blank App” template lives up to its name!

Sidebar: How Does Visual Studio Run an App?

Under the covers, Visual Studio is actually deploying the app similar to what would happen if you

acquired it from the Store. The app will show up on the Start page, where you can also uninstall

it (a helpful step if you want to reset the appdata folders and other state).

There’s really no magic involved: deployment can actually be done through the command

line. To see the details, use the Store/Create App Package in Visual Studio, select No for a Store

upload, and you’ll see a dialog in which you can save your package wherever you want. In that

folder you’ll then find an appx package, a security certificate, and a batch file called

Add-AppxDevPackage. That batch file contains PowerShell scripts that will deploy the app along

with its dependencies.

These same files are also what you can share with other developers to side-load your app

without having to give them your source project.

Blank App Project Structure
While an app created with the Blank template doesn’t have much in the visual department, it provides

much more where project structure is concerned. Here’s what you’ll find coming from the template,

which is found in Visual Studio’s Solution Explorer (as shown in Figure 2-6):

In the project root folder:

 default.html The starting page for the app.

45

 package.appmanifest The manifest. Opening this file will show Visual Studio’s

manifest editor (shown later in this chapter). I encourage you to browse around in this

UI for a few minutes to familiarize yourself with what’s all here. For example, you’ll see

references to the images noted below, a checkmark on the Internet Client capability

checked, default.html selected as the start page, and all the places where you control

different aspects of your app. We’ll be seeing these throughout this book; for a

complete reference, see the App packages and deployment and Manifest designer

topics. And if you want to explore the manifest XML directly, right-click this file and

select View Code.

 <Appname>_TemporaryKey.pfx A temporary signature created on first run.

The css folder contains a core default.css file where you’ll see media query structures for the four

view states that all apps should honor. We’ll see this in action in the next section, and I’ll discuss all the

details in Chapter 6, “Layout.”

The images folder contains four reference images, and unless you want to look like a real doofus

developer, you’ll always want to customize these before your app is complete (along with providing

scaled versions as we’ll see in Chapter 3, “App Anatomy and Page Navigation”):

 logo.png A default 150x150 (100% scale) image for the Start page.

 smalllogo.png A 30x30 image for the zoomed-out Start page.

 splashscreen.png A 620x300 image that will be shown while the app is loading.

 storelogo.png A 50x50 image that will be shown for the app in the Windows Store.

This needs to be part of an app package but is not used within Windows at run time.

The js folder contains a simple default.js.

The References folder points to CSS and JS files for the WinJS library. You can open any of these to

see how WinJS itself is implemented. (Note: if you want to search within these files, you must open and

search only within the specific file. These are not included in solution-wide or project-wide searches.)

46

http://msdn.microsoft.com/en-us/library/windows/apps/hh464929.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230259(v=vs.110).aspx

FIGURE 2-6 A Blank app project fully expanded in Solution Explorer.

As you would expect, there’s not much app-specific code for this type of project. For example, the

HTML has only a single paragraph element in the body, the one you can replace with “Hello World” if

you’re really not feeling complete without doing so. What’s more important at present are the

references to the WinJS components: a core stylesheet (ui-dark.css or ui-light.css), base.js, and ui.js:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Hello World</title>

 <!-- WinJS references -->

 <link href="//Microsoft.WinJS.1.0/css/ui-dark.css" rel="stylesheet">

 <script src="//Microsoft.WinJS.1.0/js/base.js"></script>

 <script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

 <!-- HelloWorld references -->

 <link href="/css/default.css" rel="stylesheet">

 <script src="/js/default.js"></script>

</head>

<body>

 <p>Content goes here</p>

</body>

</html>

You will generally always have these references (perhaps using ui-light.css instead) in every

HTML file of your project. The //’s in the WinJS paths refer to shared libraries rather than files in you

app package, whereas a single / refers to the root of your package. Beyond that, everything else is

standard HTML5, so feel free to play around with adding some additional HTML of your own and see

the effect.

47

Where the JavaScript is concerned, default.js just contains the basic WinJS activation code centered

on the WinJS.Application.onactivated event along with a stub for an event called

WinJS.Application.oncheckpoint:

(function () {

 "use strict";

 var app = WinJS.Application;

 var activation = Windows.ApplicationModel.Activation;

 WinJS.strictProcessing();

 app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 // TODO: This application has been newly launched. Initialize

 // your application here.

 } else {

 // TODO: This application has been reactivated from suspension.

 // Restore application state here.

 }

 args.setPromise(WinJS.UI.processAll());

 }

 };

 app.oncheckpoint = function (args) {

 };

 app.start();

})();

We’ll come back to checkpoint in Chapter 3 and WinJS.strictProcessing in Chapter 4, “Controls,

Control Styling, and Data Binding.” For now, remember from Chapter 1, “The Life Story of a WinRT

App,” that an app can be activated in many ways. These are indicated in the args.detail.kind

property, whose values come from the Windows.ApplicationModel.Activation.ActivationKind

enumeration.

When an app is launched directly from its tile on the Start screen (or in the debugger as we’ve been

doing), the kind is just launch. As we’ll see later on, other values tell us when an app is activated to

service requests like the search or share contracts, file-type associations, file pickers, protocols, and

more. For the launch kind, another bit of information from the

Windows.ApplicationMode.Activation.ApplicationExecutionState enumeration tells the app how

it was last running. Again, we’ll see more on this in Chapter 3, so the comments in the default code

above should satisfy your curiosity for the time being.

Now, what is that args.setPromise(WinJS.UI.processAll())for? As we’ll see many times,

WinJS.UI.processAll instantiates any WinJS controls that are declared in HTML—any element

(commonly a div or span) that contains a data-win-control attribute whose value is the name of a

48

constructor function. Of course, the Blank app template doesn’t include any such controls, but because

just about every app based on this template will, it makes sense to include it by default.8 As for

args.setPromise, that’s employing something called a deferral that we’ll fittingly defer to Chapter 3.

That little app.start(); at the bottom is also a very important piece, even for as short as it is. It

makes sure that various events that were queued during startup get processed. We’ll again see the

details in Chapter 3.

Finally, you may be asking, “What on earth is all that ceremonial (function () { … })(); business

about?” It’s just a conventional way in JavaScript (called the module pattern) to keep the global

namespace from becoming polluted, thereby propitiating the performance gods. The syntax defines an

anonymous function that’s immediately executed, which creates a function scope for everything inside

it. So variables like app along with all the function names are accessible throughout the module but

don’t appear in the global namespace.9

You can still introduce variables into the global namespace, of course, and to keep it all organized,

WinJS offers a means to define your own namespaces and classes (see WinJS.Namespace.define and

WinJS.Class.define), again helping to minimize additions to the global namespace.

Now that we’ve seen the basic structure of an app, let’s build something more functional and get a

taste of the WinRT APIs and a few other platform features.

Sidebar: Writing Code in Debug Mode

Because of the dynamic nature of JavaScript, it’s impressive that the Visual Studio team figured

out how to make the IntelliSense feature work quite well in the Visual Studio editor. (If you’re

unfamiliar with IntelliSense, it’s the productivity service that provides auto-completion for code

as well as popping up API reference material directly inline; learn more at JavaScript IntelliSense).

That said, a helpful trick to make IntelliSense work even better is to write code while Visual

Studio is in debug mode. That is, set a breakpoint at an appropriate place in your code, and then

run the app in the debugger. When you hit that breakpoint, you can then start writing and

editing code, and because the script context is fully loaded, IntelliSense will be working against

instantiated variables and not just what it can derive from the source code by itself. You can also

use Visual Studio’s Immediate pane to execute code directly to see the results.

8 There is a similar function WinJS.Binding.processAll that processes data-win-bind attributes (Chapter 4), and

WinJS.Resources.processAll that does resource lookup on data-win-res attributes (Chapter 17).

9 See Chapter 2 of Nicolas Zakas’s High Performance JavaScript (O’Reilly, 2010) for the performance implications scoping.

49

http://msdn.microsoft.com/en-us/library/bb385682.aspx

QuickStart #1: Here My Am! and an Introduction to Blend for

Visual Studio

When my son was three years old, he never—despite the fact that he was born to two engineers

parents and two engineer grandfathers—peeked around corners or appeared in a room saying “Hello

world!” No, his particular phrase was “Here my am!” Using that particular variation of announcing

oneself to the universe, this next app can capture an image from a camera, locate your position on a

map, and share that information through the Windows 8 Share charm. Does this sound complicated?

Fortunately, the WinRT APIs actually make it quite straightforward!

Sidebar: How Long Did It Take to Write This App?

This app took me about three hours to write. “Oh sure,” you’re thinking, “you’ve already written a

bunch of apps, so it was easy for you!” Well, yes and no. For one thing, I also wrote this part of

the chapter at the same time, and endeavored to make some reusable code. But more

importantly, it took a short amount of time because I learned how to use my tools—especially

Blend—and I knew where I could find code that already did most of what I wanted, namely all

the Windows SDK samples that you can download from

http://code.msdn.microsoft.com/windowsapps/.

As we’ll be drawing from many of these most excellent samples in this book, I encourage you

to go download the whole set—go to the URL above, and the first download below the featured

ones will take you to a page where you can get a .zip file with all the JavaScript samples. Once

you unzip these, get into the habit of searching that folder for any API or feature you’re

interested in. For example, the code I use below to implement camera capture and sourcing data

via share came directly from a couple of samples. (By the way, if you open a sample that seems

to support only the Remote Machine debugging option, the build target is probably set to

ARM—change it to x86 or x64 for local debugging.)

I also strongly encourage you to spend a day, even a half-day, getting familiar with Visual

Studio and Blend for Visual Studio and just perusing through the samples so that you know

what’s there. Trust me: such small investments will pay huge productivity dividends even in the

short term!

Design Wireframes
Before we start on the code, let’s first look at design wireframes for this app. Oooh…design? Yes!

Perhaps for the first time in the history of Windows, there’s a real design philosophy to apply to apps. In

the past, with desktop apps, it’s been more of an “anything goes” scene. There were some UI

guidelines, sure, but developers could generally get away with making up whatever user experience

that made sense to them, like burying essential checkbox options four levels deep in a series of modal

50

http://code.msdn.microsoft.com/windowsapps/

dialog boxes. Yes, this kind of stuff does make sense to certain kinds of developers; whether it makes

sense to anyone else is highly questionable!

If you’ve ever pretended or contemplated pretending to be a designer, now is the time to surrender

that hat to someone with real training or set development aside for a year or two and invest in that

training yourself. Simply said, design matters for WinRT apps, and it will make the difference between

apps that merely exist in the Windows Store and are largely ignored and apps that succeed. And

having a design in hand will just make it easier to implement because you won’t have to make those

decisions when you’re writing code! (If you still intend on filling designer shoes and communing with

apps like Adobe Illustrator, be sure to visit http://design.windows.com for the philosophy and details of

WinRT app design, plus design resources.)

When I had the idea for this app, I drew up a simple wireframe, let a few designers laugh at me

behind my back, and landed on layouts for the full screen, portrait, snap, and fill view states as shown

in Figure 2-7 and Figure 2-8.

FIGURE 2-7 Full-screen landscape and filled (landscape) wireframe. These states typically use the same wireframe

(the same margins), with the proportional parts of the grid simply becoming smaller with the reduced width.

51

http://design.windows.com/

FIGURE 2-8 Snapped wireframe (left; landscape only) and full-screen portrait wireframe (right).

Sidebar: Design for All Four View States!

Just as I thought about all four view states together for Here My Am!, I encourage you to do the

same for one simple reason: your app will be put into every view state whether you design for it or

not. Users, not the app, control the view states, so if you neglect to design for any given state,

your app will probably look hideous in that state. You can, as we’ll see in Chapter 6, lock the

landscape/portrait orientation for your app if you want, but that’s meant to enhance an app’s

experience rather than being an excuse for indolence. So in the end, unless you have a very

specific reason not to, every page in your app needs to anticipate all four view states.

This might sound like a burden, but view states don’t affect function: they are simply different

views of the same information. Remember that changing the view state never changes the mode

of the app. Handling the view states, therefore, is primarily a matter of which elements are visible

and how those elements are laid out on the page. It doesn’t have to be any more complicated

than that.

One of the important aspects of WinRT app design is following what’s called the layout silhouette:

the size of the header fonts, their placement, the specific margins, and all that (as marked in the

previous figures). It might seem restrictive, but the purpose of this recommendation is to encourage a

high degree of consistency between apps so that users’ eyes literally develop muscle memory for

common elements of the UI. Some of this can be found in Understanding the Windows 8 silhouette

and is otherwise incorporated into the templates along with many other design aspects. It’s one reason

why Microsoft generally recommends starting new apps with a template and going from there. What I

show in the wireframes above reflects the layouts provided by one of the more complex templates.

52

http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx

Enough said! Let’s just assume that we have a great design to work from and our designers

are off sipping cappuccino, satisfied with a job well done. Our job is how to then execute on that

great design.

Create the Markup
For the purposes of markup, layout, and styling, one of the most powerful tools you can add to your

arsenal is Blend for Visual Studio. As you may know, Blend has been available (at a high price) to

designers and developers working with XAML (the presentation framework that is used by WinRT apps

written in C#, Visual Basic, and C++). Now Blend is free and also supports HTML, CSS, and JavaScript. I

emphasize that latter point because it doesn’t just load markup and styles: it loads and executes your

code, right in the “Artboard” (the design surface), because that code so often affects the DOM, styling,

and so forth. Then there’s Interactive Mode…but I’m getting ahead of myself!

Blend and Visual Studio are very much two sides of a coin: they share the same project file formats

and have commands to easily switch between them, depending on whether you’re focusing on design

or development. To demonstrate that, let’s actually start building Here My Am! in Blend. As we did

before with Visual Studio, launch Blend, select New Project…, and select the Blank App template. This

will create the same project structure as below. (Note: Video 2-1 shows all these steps together.)

Following the practice of writing pure markup in HTML—with no styling and no code, and even

leaving off a few classes we’ll need for styling—let’s drop the following markup into the body element

of default.html (replacing the one line of <p>Content goes here</p>):

<div id="mainContent">

 <header aria-label="Header content" role="banner">

 <h1 class="titlearea win-type-ellipsis">

 Here My Am!

 </h1>

 </header>

 <section aria-label="Main content" role="main">

 <div id="photoSection" aria-label="Photo section">

 <h2 class="group-title" role="heading">Photo</h2>

 <img id="photo" src="images/taphere.png"

 alt="Tap to capture image from camera" role="img" />

 </div>

 <div id="locationSection" aria-label="Location section">

 <h2 class="group-title" role="heading">Location</h2>

 <iframe id="map" src="ms-appx-web:///html/map.html" aria-label="Map"></iframe>

 </div>

 </section>

</div>

Here we see the five elements in the wireframe: a main header, two subheaders, a space for a photo

(defaulting to an image with “tap here” instructions), and an iframe that specifically houses a page in

53

which we’ll instantiate a Bing maps web control.10

You’ll see that some elements have style classes assigned to them. Those that start with win- come

from the WinJS stylesheet.11 You can browse these in Blend by using the Style Rules tab, shown in

Figure 2-9. Other styles like titlearea, pagetitle, and group-title are meant for you to define in

your own stylesheet, thereby overriding the WinJS styles for particular elements.

FIGURE 2-9 In Blend, the Style Rules tab lets you look into the WinJS stylesheet and see what each particular style

contains. Take special notice of the search bar under the tabs. This is here so you don’t waste your time visually

scanning for a particular style—just start typing in the box, and let the computer do the work!

The page we’ll load into the iframe, map.html, is part of our app package that we’ll add in a

moment, but note how we reference it. The ms-appx-web:/// protocol indicates that the iframe and

everything inside it will run in the web context (introduced in Chapter 1), thereby allowing us to load

the remote script for the Bing maps control. The triple slash, for its part—or more accurately the third

slash—is shorthand for “the current app package” (a value that you can obtain from

document.location.host), so we don’t need to create an absolute URI.

To indicate that a page should be loaded in the local context, the protocol is just ms-appx://. It’s

important to remember that no script (including variables and functions) is shared between these

contexts; communication between the two goes through the HTML5 postMessage function, as we’ll see

later.

10 If you’re following the steps in Blend yourself, the taphere.png image should be added to the project in the images

folder. Right-click that folder, select Add Existing Item, and then navigate to the complete sample’s images folder and

select taphere.png. That will copy it into your current project.

11 The two standard stylesheets are ui-dark.css and ui-light.css. Dark styles are recommended for apps that deal with

media, where a dark background helps bring out the graphical elements. We’ll use this stylesheet because we’re doing

photo capture. The light stylesheet is recommended for apps that work more with textual content.

54

I’ve also included various aria-* attributes on these elements (as the templates do) that support

accessibility. We’ll look at accessibility in detail in Chapter 17, “Apps for Everyone,” but it’s an important

enough consideration that we should be conscious of it from the start: a majority of Windows users use

accessibility features in some way. And although some aspects of accessibility are easy to add later on,

adding aria-* attributes in markup is best done early.

Styling in Blend
At this point, and assuming you were paying enough attention to read the footnotes, Blend’s real-time

display of the app shows an obvious need for styling, just like raw markup should. See Figure 2-10.

FIGURE 2-10 The app in Blend without styling, showing a view that is much like the Visual Studio simulator. If the

taphere.png image doesn’t show after adding it, use the View/Refresh menu command.

The tabs along the upper left in Blend give you access to your Project files; Assets like all the

controls you can add to your UI; and a browser for all the Style Rules defined in the environment. On

the lower left side, the Live DOM area lets you browse your element hierarchy and the Device tabs lets

you set orientation, screen resolution, and view state;. Clicking an element in the Live DOM here will

highlight it in the designer, just like clicking an element in the designer will highlight it in the Live DOM

section.

Over on the right side you see what will become a very good friend: the section for HTML Attributes

and CSS Properties. In the latter case, the list at the top shows all the sources for styles that are being

55

applied to the currently selected element and where exactly those styles are coming from (often a

headache with CSS). What’s selected in that box, mind you, will determine where changes in the

properties pane below will be written, so be very conscious of your selection!

Now to get our gauche, unstylish page to look like the wireframe, we need to go through the

elements and create the necessary selectors and styles. First, I recommend creating a 1x1 grid in the

body element as this makes Blend’s display in the artboard work better at present. So add display:

-ms-grid; -ms-grid-rows: 1fr; -ms-grid-columns: 1fr; to default.css for that element.

CSS grids also make this app’s layout fairly simple: we’ll just use a couple of nested grids to place

the main sections and the subsections within them, following the general pattern of styling that works

best in Blend:

 Right-click the element you want to style in the Live DOM, and select Create Style Rule

From Element Id or Create Style Rule From Element Class.

Note If both of these items are disabled, go to the HTML Attributes pane (upper right)

and add an id, class, or both. Otherwise you’ll be hand-editing the stylesheets later on to

move styles around, so you might as well save yourself the trouble.

This will create a new style rule in the app’s stylesheet (e.g., default.css). In the CSS properties

pane on the right, then, find the rule that was created and add the necessary style properties in

the pane below.

 Repeat with every other element.

If you look in the default.css file, you’ll notice that the body element is styled with a 1x1 grid—leave

this in place, because it makes sure the rest of your styling adapts to the screen size.

So for the mainContent div, we create a rule from the Id and set it up with display: -ms-grid;

-ms-grid-columns: 1fr; and -ms-grid-rows: 128px 1fr 60px;. (See Figure 2-11.) This creates the

basic vertical areas for the wireframes. In general, you won’t want to put left or right margins directly in

this grid because the lower section will often have horizontally scrolling content that should bleed off

the left and right edges. In our case we could use one grid, but instead we’ll add those margins in a

nested grid within the header and section elements.

56

FIGURE 2-11 Setting the grid properties for the mainContent div. Notice how the View Set Properties Only

checkbox (upper right) makes it easy to see what styles are set for the current rule. Also notice in the main

“Artboard” how the grid rows and columns are indicated, including sliders (circled) to manipulate rows and columns

directly in the artboard.

Showing this and the rest of the styling—going down into each level of the markup and creating

appropriate styles in the appropriate media queries for the view states—is best done in video. Video

2-1, which is available as part of this book’s downloadable companion content, shows this whole

process starting with the creation of the project, styling the different view states, and switching to

Visual Studio (right-click the project name in Blend and select Edit In Visual Studio) to run the app in

the simulator as a verification. It also demonstrates the approximate amount of time it takes to style an

app like this once you’re familiar with the tools.

The result of all this in the simulator looks just like the wireframes—see Figures 2-12 through

2-14—and all the styling is entirely contained within the appropriate media queries of default.css. Most

importantly, the way Blend shows us the results in real time is an enormous time-saver over fiddling

with the CSS and running the app all over again, a painful process that I’m sure you’re familiar with!

(And the time savings are even greater with Interactive Mode; see Video 4-1 in the companion

content.)

57

FIGURE 2-12 Full-screen landscape view.

FIGURE 2-13 Filled view (landscape only).

58

FIGURE 2-14 Snapped view (landscape only) and full-screen portrait view.

Adding the Code
Let’s complete the implementation now in Visual Studio. Again, right-click the project name in Blend’s

Project tab and select Edit In Visual Studio if you haven’t already. Note that if your project is already

loaded into Visual Studio, when you switch to it, it will (by default) prompt you to reload changed files.

Say yes.12 At this point, we have the layout and styles for all the necessary view states, and our code

doesn’t need to care about any of it except to make some minor refinements, as we’ll see in a moment.

What this means is that, for the most part, we can just write our app’s code against the markup and

12 On the flip side, note that Blend doesn’t automatically save files going in and out of Interactive Mode. If you make a

change to the same file open in Visual Studio, switch to Blend, and reload the file, you can lose changes.

59

not against the markup plus styling, which is, of course, a best practice with HTML/CSS in general. Here

are the features that we’ll now implement:

 A Bing maps control in the Location section showing the user’s current location. In this

case we’ll want to adjust the zoom level of the map in snapped view to account for the

smaller display area. We’ll just show this map automatically, so there’s no control to

start this process.

 Use the WinRT APIs for camera capture to get a photograph in response to a tap on the

Photo img element.

 Provide the photograph and the location data to the Share charm when the user

invokes it.

Figure 2-15 shows what the app will look like when we’re done.

FIGURE 2-15 The Here My Am! app in its completed state (though I zoomed out the map so you can’t quite tell

exactly where I live!).

Creating a Map with the Current Location

For the map, we’re using a Bing maps web control instantiated through the map.html page that’s

loaded into an iframe of the main page. This page loads the Bing Maps control script from a remote

source and thus runs in the web context. Note that we could also employ the Bing Maps for WinRT

apps extension that provides script we can load into the local context. For the time being, I want to use

the remote script approach because it gives us an opportunity to work with web content and the web

context in general, something that I’m sure you’ll want to understand for your own apps. We’ll switch

60

http://msdn.microsoft.com/en-us/library/hh846481.aspx
http://msdn.microsoft.com/en-us/library/hh846481.aspx

to the local control in Chapter 8, “State, Settings, Files, and Documents.”

That said, let’s put map.html in an html folder. Right-click the project and select Add/New Folder

(entering html to name it). Then right-click that folder, select Add/New Item…, and then select HTML

Page. Once the new page appears, replace its contents with the following:13

<!DOCTYPE html>

<html>

 <head>

 <title>Map</title>

 <script type="text/javascript"

 src="http://ecn.dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=7.0"></script>

 <script type="text/javascript">

 //Global variables here

 var map = null;

 document.addEventListener("DOMContentLoaded", init);

 window.addEventListener("message", processMessage);

 //Generic function to turn a string in the syntax { functionName: ..., args: [...] }

 //into a call to the named function with those arguments. This constitutes a generic

 //dispatcher that allows code in an iframe to be called through postMessage.

 function processMessage(message) {

 //Verify data and origin (in this case the local context page)

 if (!message.data || message.origin !== "ms-appx://" + document.location.host) {

 return;

 }

 var call = JSON.parse(message.data);

 if (!call.functionName) {

 throw "Message does not contain a valid function name.";

 }

 var target = this[call.functionName];

 if (typeof target != 'function') {

 throw "The function name does not resolve to an actual function";

 }

 return target.apply(this, call.args);

 }

 function notifyParent(event, args) {

 //Add event name to the arguments object and stringify as the message

 args["event"] = event;

 window.parent.postMessage(JSON.stringify(args),

13 Note that you should replace the credentials inside the init function with your own key obtained from

https://www.bingmapsportal.com/.

61

https://www.bingmapsportal.com/

 "ms-appx://" + document.location.host);

 }

 //Create the map (though the namespace won't be defined without connectivity)

 function init() {

 if (typeof Microsoft == "undefined") {

 return;

 }

 map = new Microsoft.Maps.Map(document.getElementById("mapDiv"), {

 //NOTE: replace these credentials with your own obtained at

 //http://msdn.microsoft.com/en-us/library/ff428642.aspx

 credentials: "AhTTNOioICXvPRPUdr0_NAYWj64MuGK2msfRendz_fL9B1U6LGDymy2OhbGj7vhA",

 //zoom: 12,

 mapTypeId: Microsoft.Maps.MapTypeId.road

 });

 }

 function pinLocation(lat, long) {

 if (map === null) {

 throw "No map has been created";

 }

 var location = new Microsoft.Maps.Location(lat, long);

 var pushpin = new Microsoft.Maps.Pushpin(location, { draggable: true });

 Microsoft.Maps.Events.addHandler(pushpin, "dragend", function (e) {

 var location = e.entity.getLocation();

 notifyParent("locationChanged",

 { latitude: location.latitude, longitude: location.longitude });

 });

 map.entities.push(pushpin);

 map.setView({ center: location, zoom: 12, });

 return;

 }

 function setZoom(zoom) {

 if (map === null) {

 throw "No map has been created";

 }

 map.setView({ zoom: zoom });

 }

 </script>

 </head>

 <body>

 <div id="mapDiv"></div>

 </body>

</html>

Note that the JavaScript code here could be moved into a separate file and referenced with a

relative path, no problem. I’ve chosen to leave it all together for simplicity.

62

At the top of the page you’ll see a remote script reference to the Bing Maps control. We can

reference remote script here because the page is loaded in the web context within the iframe

(ms-appx-web:// in default.html). You can then see that the init function is called on

DOMContentLoaded and creates the map control. Then we have a couple of other methods,

pinLocation and setZoom, which can be called from the main app as needed.

Of course, because this page is loaded in an iframe in the web context, we cannot simply call those

functions directly from our app code. We instead use the HTML5 postMessage function, which raises a

message event within the iframe. This is an important point: the local and web contexts are kept

separate so that arbitrary web content cannot drive an app or access WinRT APIs. The two contexts

enforce a boundary between an app and the web tha can only be crossed with postMessage.

In the code above, you can see that we pick up such messages and pass them to the

processMessage function, a little generic function that turns a JSON string into a local function call,

complete with arguments.

To see how this works, let’s look at how we call pinLocation from within default.js. To make this

call, we need some coordinates, which we can get from the WinRT Geolocation APIs. We’ll do this

within the onactivated handler, so the user’s location is just set on startup (and saved in the

lastPosition variable sharing later on):

//Drop this after the line: WinJS.strictProcessing();

var lastPosition = null;

//Place this after args.setPromise(WinJS.UI.processAll());

var gl = new Windows.Devices.Geolocation.Geolocator();

gl.getGeopositionAsync().done(function (position) {

 //Save for share

 lastPosition = { latitude: position.coordinate.latitude,

 longitude: position.coordinate.longitude };

 callFrameScript(document.frames["map"], "pinLocation",

 [position.coordinate.latitude, position.coordinate.longitude]);

 });

where callFrameScript is just a little helper function to turn the target element, function name, and

arguments into an appropriate postMessage call:

//Place this before app.start();

function callFrameScript(frame, targetFunction, args) {

 var message = { functionName: targetFunction, args: args };

 frame.postMessage(JSON.stringify(message), "ms-appx-web://" + document.location.host);

}

A few key points about this code. First, to obtain coordinates, you can use the WinRT geolocation

API or the HTML5 geolocation API. The two are almost equivalent, with slight differences described in

Appendix B, “Comparing Overlapping WinRT and HTML5 APIs.” The API exists in WinRT because other

63

supported languages (like C# and C++) don’t have access to the HTML5 geolocation APIs, and because

we’re primarily focused on the WinRT APIs in this book, we’ll just use functions in the

Windows.Devices.Geolocation namespace.

Next, in the second parameter to postMessage you see a combination of ms-appx[-web]:// with

document.location.host. This essentially means “the current app from the local [or web] context,”

which is the appropriate origin of the message. Notice that we use the same value to check the origin

when receiving a message: the code in map.html verifies it’s coming from the app’s local context,

whereas the code in default.js verifies that it’s coming from the app’s web context. Always make sure to

check the origin appropriately.

Finally, the call to getGeopositionAsync has an interesting construct, wherein we make the call and

chain this function called done onto it, whose argument is another function. This is a very common

pattern we’ll see while working with WinRT APIs, as any API that might take longer than 50ms to

complete runs asynchronously. This conscious decision was made so that the API surface area led to

fast and fluid apps by default.

In JavaScript, such APIs return what’s called a promise object, which represents results to be

delivered at some time in the future. Every promise object has a done method whose first argument is

the function to be called upon completion. It can also take two optional functions to wire up progress

and error handlers as well. We’ll see more about promises as we progress through this book, such as

the then function that’s just like done but allows further chaining (which we’ll see in Chapter 3).

The argument passed to the completed handler (a function pass as the first argument to done)

contains the results of the async call, which in our example above is a

Windows.Geolocation.Geoposition object containing the last reading. (When reading the docs for an

async function, you’ll see that the return type is listed like IAsyncOperation<Geoposition>. The name

within the <> indicates the actual data type of the results, so you’ll normally follow the link to that

topic for the details.) The coordinates from this reading are what we then pass to the pinLocation

function within the iframe, which in turn creates a pushpin on the map at those coordinates and then

centers the map view at that same location.14

One final note about async APIs. Within the WinRT API, all async functions have “Async” in their

names. Because this isn’t common practice within JavaScript toolkits or the DOM API, async functions

within WinJS don’t use that suffix. In other words, WinRT is designed to be language-neutral, but WinJS

is designed to follow typical JavaScript conventions.

Oh Wait, the Manifest!

Now you may have tried the code above and found that you get an “Access is denied” exception when

you try to call getGeopositionAsync. Why is this? Well, the exception tells us: we neglected to set the

14 The pushpin itself is draggable, but to no effect at present. See the section “Extra Credit: Receiving Messages from the

iframe” later in this chapter for how we can pick up location changes from the map.

64

Geolocation capability in the manifest. Without that capability set, calls like this that depend on that

capability will throw an exception.

We were running in the debugger, so that exception was kindly shown to us. If you run the app

outside of the debugger—try it from the tile that should be on your Start page—you’ll see that it just

terminates without showing anything but the splash screen. This is the default behavior for an

unhandled exception. To prevent that behavior, add an error-handling function as the second

parameter to the async promise’s done method:

gl.getGeopositionAsync().then(function (position) {

 //...

}, function(error) {

 console.log("Unable to get location.");

});

The console.log function writes a string to the JavaScript Console window in Visual Studio, which is

obviously a good idea. Now run the app outside the debugger and you’ll see that it comes up, because

the exception is now considered “handled.” In the debugger, set a breakpoint on the console.log line

inside and you’ll hit that breakpoint after the exception appears (and you press Continue).

If the exception dialog gets annoying, you can control which exceptions pop up like this in the

Debug > Exceptions dialog box (shown in Figure 2-16) within JavaScript Runtime Exceptions. If you

uncheck User-unhandled, you won’t get a dialog when the exception occurs. (That dialog also has a

checkbox for this as well.)

FIGURE 2-16 JavaScript run-time exceptions in the Debug/Exceptions dialog of Visual Studio.

Back to the capability: to get the proper behavior for this app, open package.appxmanifest in your

project, select the Capabilities tab, and check Location, as shown in Figure 2-17.

65

FIGURE 2-17 Setting the Location capability in Visual Studio’s manifest editor. (Note that Blend supports editing

the manifest only as XML.)

Now, even when we declare the capability, geolocation is still subject to user consent, as mentioned

in Chapter 1. When you first run the app with the capability set, then, you should see a popup like

Figure 2-18. If the user blocks access here, the error handler will again be invoked as the API will throw

an Access denied exception.

FIGURE 2-18 A typical consent popup, reflecting the user’s color scheme, that appears when an app first tries to

call a brokered API (geolocation in this case). If the user blocks access, the API will fail, but the user can later change

consent in the Settings/Permissions panel.

Sidebar: How Do I Reset User Consent for Testing?

While debugging, you might notice that this popup appears only once, even across subsequent

debugging sessions. To clear this state, invoke the Settings charm in the running app and select

Permissions, and you’ll see toggle switches for all the relevant capabilities. If for some reason you

can’t run the app at all, go to the Start screen and uninstall the app from its tile. You’ll then see

the popup when you next run the app.

Note that there isn’t a notification when the user changes these Permission settings. The app

can detect a change only by attempting to use the API again. We’ll revisit this subject in Chapter

8.

Capturing a Photo from the Camera

In a slightly twisted way, I hope the idea of adding camera capture within a so-called “quickstart”

66

chapter has raised serious doubts in your mind about this author’s sanity. Isn’t that going to take a

whole lot of code? Well, it used to, but it doesn’t on Windows 8. All the complexities of camera capture

have been nicely encapsulated within the Windows.Media.Capture API to such an extent that we can

add this feature with only a few lines of code. It’s a good example of how a little dynamic code like

JavaScript combined with well-designed WinRT components—both those in the system and those you

can write yourself—make a very powerful combination!

To implement this feature, we first need to remember that like geolocation, the camera is a

privacy-sensitive device and must also be declared in the manifest, as shown in Figure 2-19.

FIGURE 2-19 The camera capability in Visual Studio’s manifest editor.

On first use of the camera at run time, you’ll see a consent dialog, as with geolocation, like the one

shown in Figure 2-20.

FIGURE 2-20 Popup for obtaining the user’s consent to use the camera. You can control these through the

Settings/Permissions panel at any time.

Next we need to wire up the img element to pick up a tap gesture. For this we simply need to add

an event listener for click, which works for all forms of input (touch, mouse, and stylus), as we’ll see in

Chapter 9, “Input and Sensors”:

var image = document.getElementById("photo");

image.addEventListener("click", capturePhoto.bind(image));

67

Here we’re providing capturePhoto as the event handler, and using the function object’s bind

method to make sure the this object inside capturePhoto is bound directly to the img element. The

result is that the event handler can be used for any number of elements because it doesn’t make any

references to the DOM itself:

//Place this under var lastPosition = null;

var lastCapture = null;

//Place this after callFrameScript

function capturePhoto() {

 //Due to the .bind() call in addEventListener, "this" will be the image element,

 //but we need a copy for the async completed handler below.

 var that = this;

 var captureUI = new Windows.Media.Capture.CameraCaptureUI();

 //Indicate that we want to capture a PNG that's no bigger than our target element --

 //the UI will automatically show a crop box of this size

 captureUI.photoSettings.format = Windows.Media.Capture.CameraCaptureUIPhotoFormat.png;

 captureUI.photoSettings.croppedSizeInPixels =

 { width: this.clientWidth, height: this.clientHeight };

 captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .done(function (capturedFile) {

 //Be sure to check validity of the item returned; could be null if the user canceled.

 if (capturedFile) {

 lastCapture = capturedFile; //Save for Share

 that.src = URL.createObjectURL(capturedFile, {oneTimeOnly: true});

 }

 }, function (error) {

 console.log("Unable to invoke capture UI.");

 });

}

We do need to make a local copy of this within the click handler, though, because once we get

inside the async completed function (see the function inside captureFileAsync.done) we’re in a new

function scope and the this object will have changed. The convention for such a copy of this is to call

it that. Got that?

To invoke the camera UI, we only need create an instance of

Windows.Media.Capture.CameraCaptureUI with new (a typical step to instantiate dynamic WinRT

objects), configure it with the desired format and size (among may other possibilities as discussed in

Chapter 10, “Media”), and then call captureFileAsync. This will check the manifest capability and

prompt the user for consent, if necessary.

This is an async call, so we hook a .done on the end with a completed handler, which in this case

will receive a Windows.Storage.StorageFile object. Through this object you can get to all the raw

image data you want, but for our purpose we simply want to display it in the img element.

Fortunately, that’s super-easy as well! You can hand a StorageFile object to the

68

URL.createObjectURL method and get back an URI that can be directly assigned to the img.src

attribute. Voila! The captured photo appears!15

Note that captureFileAsync will call the completed handler if the UI was successfully invoked but

the user hit the back button and didn’t actually capture anything. This is why the extra check is there

for the validity of capturedFile. An error handler on the promise will, for its part, pick up failures to

invoke the UI in the first place, but note that a denial of consent will show a message in the capture UI

directly (see Figure 2-21), so it’s unnecessary to have an error handler for that purpose with this

particular API. In most cases, however, you’ll want to have an error handler in place for async calls.

FIGURE 2-21 The camera capture UI’s message when consent is denied (left); you can change permissions through

the Settings Charm > Permissions pane (right).

Sharing the Fun!

Taking a goofy picture of oneself is fun, of course, but sharing the joy with the rest of the world is even

better. Up to this point, however, sharing information through different social media apps has meant

using the specific APIs of each service. Workable, but not scalable.

Windows 8 has instead introduced the notion of the share contract, which is used to implement the

Share charm with as many apps as participate in the contract. Whenever you’re in an app and invoke

Share, Windows sends whatever data that source app makes available (if any) to whatever other target

app the user selects (from a list of those whose manifests identify them as targets). The contract is an

15 The {oneTimeOnly: true} parameter indicates that the URI is not reusable and should be revoked via

URL.revokeObjectURL when it’s no longer used, as when we replace the img src with a new picture. Without this, we

would leak memory with each new picture. If you’ve used URL.createObjectURL in the past, you’ll see that the second

parameter is now a property bag, which aligns with the most recent W3C spec.

69

abstraction that sits between the two, so the source and target apps never need to know anything

about each other.

This makes the whole experience all the richer as the user installs more share-capable apps, and it

doesn’t limit sharing to only well-known social media scenarios. What’s also beautiful in the overall

experience is that the user never leaves the original app to do sharing—the share target app shows up

in its own view as an overlay that only partially obscures the source app. This way, the user immediately

returns to that source app when the sharing is completed, rather than having to switch back to that

app manually.

So instead of adding code to our app to share the photo and location to a particular target, like

Facebook, we only need to package the data appropriately when Windows asks for it.

That asking comes through the datarequested event sent to the Windows.ApplicationModel.-

DataTransfer.DataTransferManager object. First we just need to set up an appropriate

listener—place this code is in the onactivated event in default.js after setting up the click listener on

the img element:

var dataTransferManager =

 Windows.ApplicationModel.DataTransfer.DataTransferManager.getForCurrentView();

dataTransferManager.addEventListener("datarequested", provideData);

The idea of a current view is something that we’ll see pop up now and then. It reflects that an app

can be launched for different reasons—such as servicing a contract—and thus presents different

underlying pages or views to the user at those times. These views (unrelated to the snap/fill/etc. view

states) can be active simultaneously. To thus make sure that your code is sensitive to these scenarios,

certain APIs return objects appropriate for the current view of the app as we see here.

For this event, the handler receives a Windows.ApplicationModel.DataTransfer.DataRequest

object in the event args (e.request), which in turn holds a DataPackage object (e.request.data). To

make data available for sharing, you populate this data package with the various formats you have

available. (We’ve saved these in lastPosition and lastCapture.) In our case, we make sure we have

position and a photo, then fill in text and image properties:

//Drop this in after capturePhoto

function provideData(e) {

 var request = e.request;

 var data = request.data;

 if (!lastPosition || !lastCapture) {

 //Nothing to share, so exit

 return;

 }

 data.properties.title = "Here My Am!";

 data.properties.description = "At ("

 + lastPosition.latitude + ", " + lastPosition.longitude + ")";

 //When sharing an image, include a thumbnail

70

 var streamReference =

 Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(lastCapture);

 data.properties.thumbnail = streamReference;

 //It's recommended to always use both setBitmap and setStorageItems for sharing a single image

 //since the target app may only support one or the other.

 //Put the image file in an array and pass it to setStorageItems

 data.setStorageItems([lastCapture]);

 //The setBitmap method requires a RandomAccessStream.

 data.setBitmap(streamReference);

}

The latter part of this code is pretty standard stuff for sharing a file-based image (which we have in

lastCapture). I got most of this code, in fact, directly from the SDK’s Share content source app sample,

which we’ll look at more closely in Chapter 12, “Contracts.”

With this last addition of code, and a suitable sharing target installed (such as the SDK’s Share

content target app sample, as shown in Figure 2-22), we now have a very functional app—in all of 35

lines of HTML, 125 lines of CSS, and less than 100 lines of JavaScript!

FIGURE 2-22 Sharing (monkey-see, monkey-do!) to the Share target sample in the Windows SDK. Share targets

appear as a partial overlay on top of the current app, so the user never leaves the app context.

Extra Credit: Receiving Messages from the iframe
There’s one more piece I’ve put into Here My Am! to complete the basic interaction between app and

iframe content: the ability to post messages from the iframe back to the main app. In our case, we

71

http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782

want to know when the location of the pushpin has changed so that we can update lastPosition.

First, here’s a simple utility function I added to map.html to encapsulate the appropriate

postMessage calls to the app from the iframe:

function function notifyParent(event, args) {

 //Add event name to the arguments object and stringify as the message

 args["event"] = event;

 window.parent.postMessage(JSON.stringify(args), "ms-appx://" + document.location.host);

}

This function basically takes an event name, adds it to whatever object is given containing

parameters, and then stringifies the whole bit and posts it back to the parent.

When a pushpin is dragged, Bing maps raises a dragend event, which we’ll wire up and handle in

the setLocation function just after the pushpin is created (also in map.html):

var pushpin = new Microsoft.Maps.Pushpin(location, { draggable: true });

Microsoft.Maps.Events.addHandler(pushpin, "dragend", function (e) {

 var location = e.entity.getLocation();

 notifyParent("locationChanged",

 { latitude: location.latitude, longitude: location.longitude });

});

Back in default.js (the app), we add a listener for incoming messages inside app.onactivated:

window.addEventListener("message", processFrameEvent);

where the processFrameEvent handler looks at the event in the message and acts accordingly:

function processFrameEvent (message) {

 //Verify data and origin (in this case the web context page)

 if (!message.data || message.origin !== "ms-appx-web://" + document.location.host) {

 return;

 }

 if (!message.data) {

 return;

 }

 var eventObj = JSON.parse(message.data);

 switch (eventObj.event) {

 case "locationChanged":

 lastPosition = { latitude: eventObj.latitude, longitude: eventObj.longitude };

 break;

 default:

 break;

 }

};

Clearly, this is more code than we’d need to handle a single message or event from an iframe, but I

72

wanted to give you something that could be applied more generically in your own apps.

The Other Templates

In this chapter we’ve worked only with the Blank App template so that we could understand the basics

of writing a WinRT app without any other distractions. In Chapter 3, we’ll look more deeply at the

anatomy of apps through a few of the other templates, yet we won’t cover them all. We’ll close this

chapter, then, with a short introduction to these very handy tools.

Fixed Layout Template
“A project for a Windows Store app that scales using a fixed aspect ratio layout.” (Blend/Visual Studio

description)

What we’ve seen so far are examples of apps that adapt themselves to changes in display area by

adjusting the layout. In Here My Am!, for instance, we used CSS grids with self-adjusting areas (those

1fr’s in rows and columns). This works great for apps with content that is suitably resizable as well as

apps that can show additional content when there’s more room, such as more news headlines or items

from a search.

Other kinds of apps are not so flexible, such as games where the aspect ratio of the playing area

needs to stay constant. (It would not be fair if players on larger screens got to see more of the game!)

So, when the display area changes—either from view states or a change in display resolution—they do

better to scale themselves up or down rather than adjust their layout.

The Fixed Layout template provides the basic structure for such an app, just like the Blank template

provides for a flexible app. The key piece is the WinJS.UI.ViewBox control, which automatically takes

care of scaling its contents while maintaining the aspect ratio:

<body>

 <div data-win-control="WinJS.UI.ViewBox">

 <div class="fixedlayout">

 <p>Content goes here</p>

 </div>

 </div>

</body>

In default.css, you can see that the body element is styled as a CSS flexbox centered on the screen

and the fixedLayout element is set to 1024x768 (the minimum size for the fullscreen-landscape and

filled view states). Within the child div of the ViewBox, then, you can safely assume that you’ll always

be working with these fixed dimensions. The ViewBox will scale everything up and provide letterboxing

as necessary.

Note that such apps might not be able to support an interactive snapped state; a game, for

example, will not be playable when scaled down. In this case an app can simply pause the game and try

73

to unsnap itself when the user taps it again. We’ll revisit this in Chapter 6.

Navigation Template
“A project for a Windows Store app that has predefined controls for navigation.” (Blend/Visual Studio

description)

The Navigation template builds on the Blank template by adding support for page navigation. As

discussed in Chapter 1, WinRT apps written in HTML/JavaScript are best implemented by having a

single HTML page container into which other pages are dynamically loaded. This allows for smooth

transitions (as well as animations) between those pages and preserves the script context.

This template, and the others that remain, employ a Page Navigator control that facilitates loading

(and unloading) pages in this way. You need only create a relatively simple structure to describe each

page and its behavior. We’ll see this in Chapter 3.

In this model, default.html is little more than a simple container, with everything else in the app

coming through subsidiary pages. The Navigation template creates only one subsidiary page, yet it

establishes the framework for how to work with multiple pages.

Grid Template
“A three-page project for a Windows Store app that navigates among grouped items arranged in a grid.

Dedicated pages display group and item details.” (Blend/Visual Studio description)

Building on the Navigation template, the Grid template provides the basis for apps that will

navigate collections of data across multiple pages. The home page shows grouped items within the

collection, from which you can then navigate into the details of an item or into the details of a group

and its items (from which you can then go into item details as well).

In addition to the navigation, the Grid template also shows how to manage collections of data

through the WinJS.Binding.List class, a topic we’ll explore much further in Chapter 5, “Collections

and Collection Controls.” It also provides the structure for an app bar and shows how to simplify the

app’s behavior in snap view.

The name of the template, by the way, derives from the particular “grid” layout used to display the

collection, not from the CSS grid.

Split Template
“A two-page project for a Windows Store app that navigates among grouped items. The first page allows

group selection while the second displays an item list alongside details for the selected item.”

(Blend/Visual Studio description)

This last template also builds on the Navigation template and works over a collection of data. Its

home page displays a list of groups, rather than grouped items as with the Grid template. Tapping a

74

group then navigates to a group detail page that is split into two sides (hence the template name). The

left side contains a vertically panning list of items; the right side shows details for the currently selected

item.

Like the Grid template, the Split template provides an app bar structure and handles both snap and

portrait views intelligently. That is, because vertically oriented views don’t lend well to splitting the

display (contrary to the description above!), the template shows how to switch to a page navigation

model within those view states to accomplish the same ends.

What We’ve Just Learned

 How to create a new WinRT app from the Blank app template.

 How to run an app inside the local debugger and within the simulator.

 The features of the simulator.

 The basic project structure for WinRT apps, including WinJS references.

 The core activation structure for an app.

 The role and utility of design wireframes in app development, including the importance

of designing for all view states.

 How to quickly and efficiently add styling to an app’s markup in Blend for Visual Studio.

 How to safely use web content (such as Bing maps) within an iframe and communicate

between that page and the app.

 How to use the WinRT APIs, especially async methods involving promises but also

geolocation and camera capture.

 The importance of manifest capabilities in being able to use certain WinRT APIs.

 How to share data through the Share contract.

 The kinds of apps supported through the other app templates: Fixed Layout,

Navigation, Grid, and Split.

75

Chapter 3

App Anatomy and Page Navigation

During the early stages of writing this book, I was also working closely with a contractor to build a

house for my family. While I wasn’t on site every day managing the whole effort, I was certainly

involved in most decision-making throughout the home’s many phases, and I occasionally participated

in the construction itself.

In the Sierra Nevada foothills of California, where I live, the frame of a house is built with the

plentiful local wood, and all the plumbing and wiring has to be in the walls before installing insulation

and wallboard (aka sheetrock). It amazed me how long it took to complete that infrastructure. The

builders spent a lot of time adding little blocks of wood here and there to make it much easier for

them to do the finish work later on (like hanging cabinets), and lots of time getting the wiring and

plumbing put together properly. All of this becomes completely invisible to the eye once the wallboard

is on and the finish work is in place.

But then, imagine what the house would be like without such careful attention to structural details.

Imagine having some light switches that just didn’t work or controlled the wrong fixtures. Imagine if

the plumbing leaked. Imagine if cabinets and trim started falling off the walls after a week or two of

living in the house. Even if the house managed to pass final inspection, such flaws would make it

almost unlivable, no matter how beautiful it might appear at first sight. It would be like a few of the

designs of the famous architect Frank Lloyd Wright: very interesting architecturally and aesthetically

pleasing, yet thoroughly uncomfortable to actually live in.

Apps are very much the same story—I’ve marveled, in fact, just how many similarities exist between

the two endeavors! That is, an app might be visually beautiful, even stunning, but once you really start

using it day to day, a lack of attention on the fundamentals will become painfully apparent.

This chapter, then, is about those fundamentals: the core foundational structure of an app upon

which you can build something that can look beautiful and really work well. We’ll first complete our

understanding of the hosted environment and then look at activation (how apps get running) and

lifecycle transitions. We’ll then look at page navigation within an app, and we’ll see a few other

important considerations along the way, such as working with multiple async operations.

Let me offer you advance warning that this is an admittedly longer and more intricate chapter than

many that follow, since it specifically deals with the software equivalents of framing, plumbing, and

wiring. With our house, I can completely attest that installing the lovely light fixtures my wife picked

out seemed, in the moment, much more satisfying than the framing I’d done months earlier. But now,

actually living in the house, I have a deep appreciation for all the nonglamorous work that went into it.

It’s a place I want to be, a place in which my family and I are delighted, in fact, to spend the majority of

our lives. And is that not how you want your customers to feel about your apps? Absolutely! Knowing

the delight that a well-architected app can bring to your customers, let’s dive in and find our own

76

delight in exploring the intricacies!

Local and Web Contexts within the App Host

As described in Chapter 1, “The Life Story of a WinRT app,” apps written with HTML, CSS, and

JavaScript are not directly executable apps like their compiled counterparts written in C#, Visual Basic,

or C++. In our app packages, there are no .EXEs, just .html, .css, and .js files (plus resources, of course)

that are, plain and simple, nothing but text. So something has to turn all this text that defines an app

into something that’s actually running in memory. That something is again the app host, wwahost.exe,

which creates what we call the hosted environment for WinRT apps.

We’ve already covered most of the characteristics of the hosted environment in Chapter 1 and

Chapter 2, “Quickstart”:

 The app host (and the apps in it) use brokered access to sensitive resources.

 Though the app host provides an environment very similar to that of Internet Explorer

10, there are a number of changes to the DOM API, documented on HTML and DOM

API changes list and HTML, CSS, and JavaScript features and differences.

 HTML content in the app package can be loaded into the local or web context,

depending on the ms-appx:/// and ms-appx-web:/// scheme used to reference that

content (the third / again means “in the app package”). Remote content (referred to

with http[s]://) always runs in the web context.

 The local context has access to the WinRT API, among other things, whereas the web

context is allowed to load and execute remote script but cannot access WinRT.

 ActiveX plug-ins are generally not allowed in either context.

 The HTML5 postMessage function can be used to communicate between an iframe

and its containing parent across contexts. This can be useful to execute remote script

within the web context and pass the results to the local context; script acquired in the

web context should not be itself passed to the local context and executed there.

(Windows Store policy actually disallows this, and apps submitted to the Store will be

analyzed for such practices.)

 Further specifics can be found on Features and restrictions by context, including which

parts of WinJS don’t rely on WinRT and can thus be used in the web context. (WinJS, by

the way, cannot be used on web pages outside of an app.)

Now what we’re really after in this chapter is not so much these characteristics themselves but their

impact on the structure of an app. First and foremost is that an app’s home page (the one you point to

77

http://msdn.microsoft.com/en-us/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465380.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465373.aspx

in the manifest in the Start page field of the Application UI tab16) always runs in the local context, and

any page to which you navigate directly (<a href> or document.location) must also be in the local

context. (You can try otherwise, but the app host will display an interesting “not supported” message

right inside your app!) Those pages, however, can contain iframe elements in either context,

depending on which scheme you use.

A local context page can contain an iframe in either local or web context, provided that the src

attribute refers to content in the app package (and by the way, programmatic read-only access to your

package contents is obtained via Windows.ApplicationMode.Package.Current.InstalledLocation).

Referring to any other location (http[s]:// or other protocols) will always place the iframe in the web

context.

<!-- iframe in local context with source in the app package -->

<!-- this form is only allowed from inside the local context -->

<iframe src=" /frame-local.html"></iframe>

<iframe src="ms-appx:///frame-local.html"></iframe>

<!-- iframe in web context with source in the app package -->

<iframe src="ms-appx-web:///frame-web.html"></iframe>

<!-- iframe with an external source automatically assigns web context -->

<iframe src="http://www.bing.com"></iframe>

Also, if you use an tag with target pointing to an iframe, the

scheme in href determines the context.

A web context page, for its part, can contain an iframe only in the web context; for example, the

last two iframe elements above are allowed, whereas the first two are not. You can also use

ms-appx-web:/// within the web context to refer to other content within the app package, such as

images.

Although not commonly done within WinRT apps for reasons we’ll see later in this chapter, similar

rules apply with page-to-page navigation using <a href> or document.location. Since the whole

scene here can begin to resemble overcooked spaghetti, the exact behavior for these variations and for

iframes is described in the following table:

Target Result in Local Context Page Result in Web Context Page

<iframe src="ms-appx:///"> iframe in local context Not allowed

<iframe src="ms-appx-web:///"> iframe in web context iframe in web context

<iframe src="http[s]:// "> or

other scheme

iframe in web context iframe in web context

<a href="[uri]"
target="myFrame">
<iframe name="myFrame">

iframe in local or web context

depending in [uri]

iframe in web context; [uri] cannot

begin with ms-appx.

 Navigates to page in local context Not allowed unless explicitly specified

(see below)

 Not allowed Navigates to page in web context

16 The manifest names this the “Start page,” but I prefer “home page” to avoid confusion with the Windows Start screen.

78

 with any other

protocol including http[s]

Opens default browser with [uri] Opens default browser with [uri]

When an iframe is in the web context, note that its page can contains ms-appx-web references to

in-package resources, even if the page is loaded from a remote source (http[s]). Such pages, of

course, would not work in a browser.

The last two items in the table really mean that a WinRT app cannot navigate from its top-level

page (in the local context) directly to a web context page of any kind (local or remote). That’s just life

in the app host! Such content must be placed in an iframe.

Similarly, navigating from a web context page to a local context page is not allowed by default, but

you can enable this by calling the super-secret function MSApp.addPublicLocalApplicationUri (from

code in a local page, and it actually is well-documented) for each specific URI you need:

//This must be called from the local context

MSApp.addPublicLocalApplicationUri("ms-appx:///frame-local.html");

The Direct Navigation example for this chapter gives a demonstration of this. Do be careful when

the URI contains query parameters, however. For example, you don’t want to allow a website to

navigate to something like ms-appx:///delete.html?file=superimportant.doc!

One other matter that arises here is the ability to grant a web context page access to specific

functions like geolocation and writing to the clipboard—things that web pages typically assume they

can use. By default, the web context in a WinRT app has no access to such operating system

capabilities. For example, create a new Blank project in Visual Studio with this one line of HTML in the

body of default.html:

<iframe src="http://maps.bing.com" style="width:1366px; height: 768px"></iframe>

Then set the Location capability in the manifest (something I forgot on my first experiment with

this!), and run the app. You’ll see the Bing page you expect.17 However, attempting to use geolocation

from within that page—clicking the locator control to the left of “World,” for instance—will give you

the kind of error shown in Figure 3-1.

Figure 3-1 Use of brokered capabilities like geolocation from within a web context will generate an error.

Such capabilities are blocked because web content loaded into an iframe can easily provide the

17 If the color scheme looks odd, it’s because the iframe is picking up styles from the default ui-dark.css of WinJS. Try

changing that stylesheet to ui-light.css for something that looks more typical.

79

http://msdn.microsoft.com/en-us/library/windows/apps/hh465759.aspx

means to navigate to other arbitrary pages. From the Bing maps page used above, for example, a user

can go to the Bing home page, do a search, and end up on any number of untrusted and potentially

malicious pages. Whatever the case, those pages might request access to sensitive resources, and if

they just generated the same user consent prompts as an app, users could be tricked into granting

such access.

Fortunately, if you ask nicely, Windows will let you enable those capabilities for web pages that the

app knows about. All it takes is an affidavit signed by you and sixteen witnesses, and…OK, I’m only

joking! You simply need to add what are called application content URI rules to your manifest. Each rule

says that content from some URI is known and trusted by your app and can thus act on the app’s

behalf. (You can also exclude URIs, which is typically done to exclude specific pages that would

otherwise be included within another rule.)

Such rules are created in the Content Uri tab of Visual Studio’s manifest editor, as shown in Figure

3-2. Each rule needs to be the exact URI that might be making a request, http://www.bing.com/maps/.

Once we add that rule (as in the completed ContentUri example for this chapter), Bing maps is allowed

to use geolocation. When it does so, a message dialog will appear (Figure 3-3), just as if the app had

made the request. (Note: when run inside the debugger, the ContentUri example will show a

Permission Denied exception on startup. This is expected and you can press Continue within Visual

Studio; it doesn’t affect the app running outside the debugger.)

Figure 3-2 Adding a content URI to the app manifest; the contents of the text box is saved when the manifest is

saved. Add New URI creates another set of controls in which to enter additional rules.

Figure 3-3 With an content URI rule in place, web content in an iframe acts like part of the app. This shows exactly

why content URI rules are necessary to protect the user from pages unknown to the app that could otherwise trick

the user into granting access to sensitive resources.

Sidebar: A Few iframe Tips and Cautions

As we’re talking about iframe elements here, there are a couple extra tips you might find helpful

80

when using them. First, to prevent selection, style the iframe with –ms-user-select: none or set

its style.msUserSelect property to "none" in JavaScript. Second, some web pages contain

frame-breaking code that prevents the page from being loaded into an iframe, in which case

the page will be opened in the default browser and not the app. Third, just as plug-ins aren’t

supported in WinRT apps, they’ll also fail to load for web pages loaded into an iframe. In short,

pulling web content that you don’t own into an app is a risky business!

Furthermore, iframe support is not intended to let you just build an app by pulling in remote

web pages. The Windows Store Certification Requirements, in fact, specifically disallow apps that

are just websites—the primary app experience must take place within the app and not within

web sites hosted in iframe elements. (See section 2.4 in those requirements.) A few key reasons

for this are that websites typically aren’t set up well for touch interaction (which violates

requirement 3.5) and often won’t work well in snapped view (violating requirement 3.6). In short,

overuse of web content will likely mean that the app won’t be accepted by the Store.

Referencing Content from App Data: ms-appdata
As we’ve seen, the ms-appx[-web]:/// schema allow an app to navigate iframe elements to pages

that exist inside the app package, or on the web. This begs a question: can an app point to content on

the local file system that exists outside its package, such as a dynamically created file in an appdata

folder? Can, perchance, an app use the file:// protocol to navigate and/or access that content?

Well, as much as I’d love to tell you that this just works, the answer is somewhat mixed. First off, the

file:// protocol is wholly blocked by design for various security reasons, even for your appdata

folders to which you otherwise have full access. (Custom protocols are also unsupported in iframe src

URIs.) Fortunately there is a substitute, ms-appdata://, that fulfills part of the need. Within the local

context of an app, ms-appdata is a shortcut to the appdata folder wherein exist local, roaming, and

temp folders. So, if you created a picture called image65.png in your appdata local folder, you can

refer to it by using ms-appdata:///local/image65.png (and similar forms with roaming and temp)

wherever a URI can be used, including within a CSS style like background.

Unfortunately, the caveat—there always seems to be one with the app container!—is that

ms-appdata can be used only for resources, namely with the src attribute of img, video, and audio

elements. It cannot be used to load HTML pages, CSS stylesheets, or JavaScript, nor can it be used for

navigation purposes (iframe, hyperlinks, etc.).

Can you do any kind of dynamic page generation, then? Well, yes: you need to load file contents

and process them manually. You can get to your appdata folders through the Windows.Storage.-

ApplicationData API and go from there. To load and render a full HTML page requires that you patch

up all external references and play some magic with script, but it can be done if you really want.

A similar question is whether you can generate and execute script on the fly. The answer is again

qualified. Yes, you can take a JavaScript string and pass it to the eval or execScript functions. The

inevitable caveat here is that automatic filtering is applied to that code that prevents injection of script

81

http://msdn.microsoft.com/en-us/library/windows/apps/hh779846.aspx

(and other risky markup) into the DOM via properties like innerHTML and outerHTML, and methods like

document.write and DOMParser.parseFromString. Yet there are certainly situations where you, the

developer, really know what you’re doing and enjoy juggling flaming swords and running chainsaws

and thus want to get around such restrictions, especially when using third-party libraries. (See the

sidebar below.) Acknowledging that, Microsoft provides a mechanism to consciously circumvent all

this: MSApp.execUnsafeLocalFunction. For all the details regarding this, refer to Developing secure

apps, which covers this along with a few other obscure topics (like the sandbox attribute for iframes)

that I’m not including here.

And curiously enough, WinJS actually makes it easier for you to juggle flaming swords and running

chainsaws! WinJS.Utilities.setInnerHTMLUnsafe, setOuterHTMLUnsafe, and

insertAdjacentHTMLUnsafe are wrappers for calling DOM methods that would otherwise strip out

risky content.

All that said (don’t you love being aware of the details?), let’s look at an example of using

ms-appdata, which will probably be much more common in your app-building efforts.

Sidebar: Third-Party Libraries and the Hosted Environment

In general, WinRT apps can employ libraries like jQuery, Prototype, Dojo, and so forth, as noted

in Chapter 1. However, there are some limitations and caveats.

First, because local context pages in an app cannot load script from remote sources, apps

typically need to include such libraries in their packages unless only being used from the web

context. (WinJS, mind you, doesn’t need bundling because it’s provided by the Windows

Store—such “framework packages” are not enabled for third parties in Windows 8.)

Second, DOM API changes and app container restrictions might affect the library. For

example, library functions using window.alert won’t work. One library also cannot load another

library from a remote source in the local context. Most importantly, anything in the library that

assumes a higher level of trust than the app container provides, such as assuming open file

system access, will have issues.

The most common issue comes up when libraries inject elements or script into the DOM (as

through innerHTML), a widespread practice for web applications that is not generally allowed

within the app container. For example, trying to create a jQuery datepicker widget

($("myCalendar").datepicker()) will hurl out this kind of error. You can get around this on the

app level by wrapping the code above with MSApp.execUnsafeLocalFunction, but that doesn’t

solve injections coming from deeper inside the library. In the jQuery example given here, the

control can be created but clicking a date in that control generates another error.

In short, you’re free to use third-party libraries so long as you’re aware that they were

generally written with assumptions that don’t always apply within the app container. Over time,

of course, fully Windows 8–compatible versions of such libraries will emerge.

82

http://msdn.microsoft.com/en-us/library/windows/apps/hh849625.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh849625.aspx

Here My Am! with ms-appdata

OK! Having endured seven pages of esoterica, let’s play with some real code and return to the Here My

Am! app we wrote in Chapter 2. Here My Am! used the convenient URL.createObjectURL method to

display a picture taken through the camera capture UI in an img element:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .done(function (capturedFile) {

 if (capturedFile) {

 that.src = URL.createObjectURL(capturedFile);

 }

 });

This is all well and good, if we just take it on faith that the picture is stored somewhere—we don’t

really care so long as we get a URI. Truth is, pictures (and video) from the camera capture API are just

stored in a temp file; if you set a breakpoint in the debugger and look at capturedFile, you’ll see that

it has an ugly file path like C:\Users\kraigb\AppData\Local\Packages\ ProgrammingWin8-JS-CH3-

HereMyAm3a_5xchamk3agtd6\TempState\picture001.png. Egads. Not the friendliest of locations, and

definitely not one that we’d want a typical consumer to ever see!

With an app like this, let’s copy that temp file to a more manageable location, which could, for

example, allow the user to select from previously captured pictures. We’ll make a copy in the app’s

local appdata folder and use ms-appdata to set the img src to that location. Let’s start with the call to

captureUI.captureFileAsync as before:

//For use across chained promises

var capturedFile = null;

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .then(function (capturedFileTemp) {

 //Be sure to check validity of the item returned; could be null if the user canceled.

 if (!capturedFileTemp) { throw ("no file captured"); }

Notice that instead of calling done to get the results of the promise, we’re using then instead. This is

because we need to chain a number of async operations together and then allows errors to propagate

through the chain, as we’ll see in the next section. In any case, once we get a result in

capturedFileTemp (which is in a gnarly-looking folder), we then open or create a “HereMyAm” folder

within our local appdata. This happens via Windows.Storage.ApplicationData.current.-

localFolder, which gives us a Windows.Storage.StorageFolder object that provides a

createFolderAsync method:

 //As a demonstration of ms-appdata usage, copy the StorageFile to a folder called HereMyAm

 //in the appdata/local folder, and use ms-appdata to point to that.

 var local = Windows.Storage.ApplicationData.current.localFolder;

 capturedFile = capturedFileTemp;

 return local.createFolderAsync("HereMyAm",

 Windows.Storage.CreationCollisionOption.openIfExists);

 })

 .then(function (myFolder) {

 //Again, check validity of the result operations

83

 if (!myFolder) { throw ("could not create local appdata folder"); }

Assuming the folder is created successfully, myFolder will contain another StorageFile object. We

then use this as a target parameter for the temp file’s copyAsync method, which also takes a new

filename as its second parameter. For that name we’ll just use the original name with the date/time

appended (replacing colons with hypens to make a valid filename):

 //Append file creation time (should avoid collisions, but need to convert colons)

 var newName = capturedFile.displayName + " - "

 + capturedFile.dateCreated.toString().replace(/:/g, "-") + capturedFile.fileType;

 return capturedFile.copyAsync(myFolder, newName);

 })

 .done(function (newFile) {

 if (!newFile) { throw ("could not copy file"); }

Because this was the last async operating in the chain, we use the promise’s done method for

reasons we’ll again see in a moment. In any case, if the copy succeeded, newFile contains a

StorageFile object for the copy, and we can point to that using an ms-appdata URI:

 lastCapture = newFile; //Save for Share

 that.src = "ms-appdata:///local/HereMyAm/" + newFile.name;

 },

 function (error) {

 console.log(error.message);

 });

The completed code is in the HereMyAm3a example.

Of course, we could still use URL.createObjectURL with newFile as before (making sure to provide

the { oneTimeOnly=true } parameter to avoid memory leaks). While that would defeat the purpose of

this exercise, it works perfectly (and the memory overhead is essentially the same since the picture has

to be loaded either way). In fact, we’d need to use it if we copy images to the user’s pictures library

instead. To do this, just replace Windows.Storage.ApplicationData.current.localFolder with

Windows.Storage.KnownFolders.picturesLibrary and declare the Pictures library capability in the

manifest. Both APIs give us a StorageFolder, so the rest of the code is the same except that we’d use

URL.createObjectURL because we can neither use ms-appdata:// nor file:// to refer to the pictures

library. The HereMyAm3a example contains this code in comments.

Sequential Async Operations: Chaining Promises

In the previous code example, you might have noticed how we throw exceptions whenever we don’t

get a good result back from any given async operation. Furthermore, we have only a single error

handler at the end, and there’s this odd construct of returning the result (a promise) from each

subsequent async operation instead of just processing the promise then and there.

Though it may look odd at first, this is actually the most common pattern for dealing with

sequential async operations because it works better than the more obvious approach of nesting.

84

Nesting means to call the next async API within the completed handler of the previous one, with each

promise fulfilled with done. Here’s how the async calls in previous code would be placed with this

approach (extraneous code removed for simplicity):

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .done(function (capturedFileTemp) {

 //...

 local.createFolderAsync("HereMyAm", ...)

 .done(function (myFolder) {

 //...

 capturedFile.copyAsync(myFolder, newName)

 .done(function (newFile) {

 })

 })

 });

The one advantage to this approach is that each completed handler will have access to all the

variables declared before it. Yet the disadvantages begin to pile up. For one, there is usually enough

intervening code between the async calls that the overall structure becomes visually messy. More

significantly, error handling becomes significantly more difficult. When promises are nested, error

handling must be done at each level; if you throw an exception at the innermost level, for instance, it

won’t be picked up by any of the outer error handlers. Each promise thus needs its own error handler,

making real spaghetti of the basic code structure:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)
 .done(function (capturedFileTemp) {
 //...
 local.createFolderAsync("HereMyAm", ...)
 .done(function (myFolder) {
 //...
 capturedFile.copyAsync(myFolder, newName)
 .done(function (newFile) {
 },
 function (error) {
 })
 },
 function (error) {
 });
 },

 function (error) {

 });

I don’t know about you, but I really get lost in all the }’s and)’s (unless I try hard to remember my

LISP class in college), and it’s hard to see which error function applies to which async call.

Chaining promises solves all of this with the small tradeoff of needing to declare a few extra temp

variables outside the chain. With chaining, you return the promise out of each completed handler

(rather than calling the next async function and tagging on a .done). This allows you to indent all the

async calls at the same level, and it also has the effect of propagating errors down the chain. When an

error happens within a promise, you see, what comes back is still a promise object, and if you call its

then method (but not done—see the next section), it will again return another promise object with an

85

error. As a result, any error along the chain will quickly propagate through to the first available error

handler, thereby allowing you to have only a single error handler at the end:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .then(function (capturedFileTemp) {

 //...

 return local.createFolderAsync("HereMyAm", ...);

 })

 .then(function (myFolder) {

 //...

 return capturedFile.copyAsync(myFolder, newName);

 })

 .done(function (newFile) {

 },

 function (error) {

 })

To my eyes (and my aging brain), this is a much cleaner code structure—and it’s therefore easier to

debug and maintain. If you like, you can even end the chain with a done(null, errorHandler) call,

replacing the previous done with then:

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 //...

 .then(function (newFile) {

 })

 .done(null, function (error) {

 })

})

Finally, a word about debugging chained promises (or nested ones, for that matter). Each step

involves an async operation, so you can’t just step through as you would with synchronous code

(otherwise you’ll end up deep inside WinJS). Instead, set a breakpoint on the first line within each

completed handler and on the first line of the error function at the end. As each breakpoint is hit, you

can step through that completed handler. When you reach the next async call, click the Continue

button in Visual Studio so that the async operation can run, after which you’ll hit the breakpoint in the

next completed handler or you’ll hit the breakpoint in the error handler.

Error Handling Within Promises: then vs. done

Although it’s common to handle errors at the end of a chain of promises, as demonstrated in the code

above, you can still provide an error handler at any point in the chain—then and done both take the

same arguments. If an exception occurs at that level, it will surface in the innermost error handler.

This brings us to the difference between then and done. First, then returns another promise, thereby

allowing chaining, whereas done returns undefined (so it’s always at the end of the chain). Second, if

an exception occurs within one async operation’s then method and there’s no error handler at that

level, the error gets stored in the promise returned by then. In contrast, if done sees an exception and

there’s no error handler, it throws that exception to the app’s event loop. This will bypass any local

(synchronous) try/catch block, though you can pick them up in either in the WinJS.Application.-

86

onerror or window.onerror events. (The latter will get the error if the former doesn’t handle it.) If you

don’t, the app will be instantly terminated and an error report sent to the Windows Store dashboard.

We actually recommend that you provide a WinJS.Application.onerror handler for this reason.

In practical terms, this means that if you end a chain of promises with a then and not done, all

exceptions in that chain will get swallowed and you’ll never know there was a problem! This can place

an app in an indeterminate state and cause much larger problems later on. So, unless you’re going to

pass the last promise in a chain to another piece of code that will itself call done, always use done at the

end of a chain even for a single async operation.

There is much more you can do with promises, by the way, like combining them, canceling them,

and so forth. We’ll come back to all this at the end of this chapter.

Debug Output, Error Reports, and the Event Viewer
Speaking of exceptions and error handling, it’s sometimes heartbreaking to developers that

window.prompt and window.alert are not available to WinRT apps as quickie debugging aids.

Fortunately, you have two other good options for that purpose. One is Windows.UI.Popups.-

MessageDialog, which is actually what you use for real user prompts in general. The other is to use

console.log, as shown earlier, which will send text to Visual Studio’s output pane. These messages can

also be logged as Windows events, as we’ll see in a moment.18

Another DOM API function to which you might be accustomed is window.close. You can still use

this as a development tool, but Windows interprets this call in released apps as a crash and generates

an error report in response. This report will appear in the Store dashboard for your app, with a message

telling you to not use it! (After all, WinRT apps should not provide their own close affordances.)

There might be situations, however, when a released app needs to close itself in response to

unrecoverable conditions. Although you can use window.close for this, it’s better to use

MSApp.terminateApp because it allows you to also include information as to the exact nature of the

error that shows up in the Store dashboard, making it easier to diagnose the problem.

In addition to the Store dashboard, you should make fast friends with the Windows Event Viewer.19

This is where error reports, console logging, and unhandled exceptions (which again terminate the app

without warning) can be recorded.

To enable this, you need to do a couple steps. First navigate to Application and Services Log and

expand Microsoft/Windows/AppHost, left-click select (this is important), right-click Admin, and then

select View -> Show Analytic and Debug Logs for full output, as shown in Figure 3-4. This will enable

18 For readers who are seriously into logging, beyond the kind you do with chainsaws, check out the WinJS.Utilities

functions startLog, stopLog, and formatLog, which provide additional functionality on top of console.log. I’ll leave you

to commune with the documentation for these but wanted to bring them to your awareness.

19 If you can’t find Event Viewer, press the Windows key to go to the Start page, and then invoke the Settings charm. Select

Tiles, and turn on Show Administrative Tools. You’ll then see a tile for Event Viewer on your Start page.

87

http://msdn.microsoft.com/en-us/library/windows/apps/br229783.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701617.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701626.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701587.aspx

tracing for errors and exceptions. Then right-click AppTracing (also under AppHost) and select Enable

Log. This will trace your calls to console.log as well as other diagnostic information coming from the

app host.

Figure 3-4 App host events, such as unhandled exceptions and load errors, can be found in Event Viewer.

We already introduced the Visual Studio’s Exceptions dialog in Chapter 2; refer back to Figure 2-16.

For each type of JavaScript exception, this dialog supplies two checkboxes labeled Thrown and

User-unhandled. Checking Thrown will display a dialog box in the debugger (Figure 3-5) whenever an

exception is thrown, regardless of whether it’s handled and before reaching any of your error handlers.

If you have error handlers, you can safely click the Continue button in the dialog, and you’ll eventually

see the exception surface in those error handlers. (Otherwise the app will terminate.) If you click Break

instead, you can find the exception details in the debugger’s Locals pane, as shown in Figure 3-6.

Figure 3-5 Visual Studio’s exception dialog. As the dialog indicates, it’s safe to press Continue if you have an error

handler in the app; otherwise the app will terminate. Note that the checkbox in this dialog is a shortcut to toggle

the Thrown checkbox for this exception type in the Exceptions dialog.

88

Figure 3-6 Information in Visual Studio’s Locals pane when you Break on an exception.

The User-unhandled option (enabled for all exceptions by default) will display a similar dialog

whenever an exception is thrown to the event loop, indicating that it wasn’t handled by an

app-provided error function (“user” code from the system’s perspective).

You typically turn on Thrown only for those exceptions you care about; turning them all on can

make it very difficult to step through your app! Still, you can try it as a test, and then leave checks only

for those exceptions you expect to catch. Do leave User-unhandled checked for everything else; in fact,

unless you have a specific reason not to, make sure that User-unhandled is checked next to JavaScript

Runtime Exceptions because this will include those exceptions not otherwise listed. This way you can

catch (and fix) any exceptions that might abruptly terminate the app, which is something your

customers should never experience.

App Activation

First, let me congratulate you for coming this far into a very detailed chapter! As a reward, let’s talk

about something much more tangible and engaging: the actual activation of an app and its startup

sequence, something that can happen a variety of ways, such as via the Start screen tile, contracts, and

file type and protocol associations. In all these activation cases, you’ll be writing plenty of code to

initialize your data structures, reload previously saved state, and do everything to establish a great

experience for your users.

Branding Your App 101: The Splash Screen and Other Visuals
With activation, we actually need to take a step back even before the app host gets loaded, back to the

moment a user taps your tile on the Start screen or when your app is launched through a contract or

other association. The very first thing that happens, before any app-specific code is loaded or run, is

that Windows displays a splash screen composed of the image and background color you provide in

your manifest.

The splash screen—which shows for at least 0.75 seconds so that it’s not just a flash—gives users

something interesting to look at briefly while the app gets started (much better than an hourglass). It

also occupies the whole view where the app is being launched (which might be the filled view state or

the overlay area from the share or search charm), so it’s a much more directly engaging experience for

89

your users. During this time, an instance of the app host gets launched to load, parse, and render your

HTML/CSS, and load, parse, and execute your JavaScript, firing events along the way as we’ll see in the

next section. When the app is ready with its first page, the system removes the splash screen.

The splash screen, along with your app tile, is clearly one of the most important ways to uniquely

brand your app, so make sure that you and your graphic artist(s) give full attention to these. There are

additional graphics and settings in the manifest that also affect your branding and overall presence in

the system, as shown in the table below. Be especially aware that the Visual Studio and Blend templates

provide some default and thoroughly unattractive placeholder graphics. Thus, take a solemn vow right

now that you truly, truly, cross-your-heart will not upload an app to the Windows Store with those

defaults still in place! (For additional guidance, see Guidelines and checklist for splash screens.)

You can see that the table lists multiple sizes for various images specified in the manifest to

accommodate varying pixel densities: 100%, 140%, and 180% scale factors, and even a few at 80%

(don’t neglect the latter: they are typically used for most desktop monitors). So while you can just

provide a single 100% scale image for each of these, it’s almost guaranteed that scaled-up versions of

that graphic are going to look bad. So why not make your app look its best? Take the time to create

each individual graphic consciously.

Manifest

Tab

Section Item Use Image Sizes

100%

140% 180%

Packaging n/a Logo Tile/logo image used for the app on its

Product Description Page in the

Windows Store.

50x50 70x70 90x90

Application

UI

n/a Display

Name

Appears in “all apps” view on the Start

screen, search results, the Settings

charm, and in the Store.

n/a n/a n/a

 Tile Logo Single-wide tile image 150x150 (+

80% scale at

120x120)

210x210 270x270

 Wide

logo

(Option

al)

Double-wide tile image. If provided,

this is shown as the default, but user

can use the single-wide tile if desired.

310x150

(+80% scale

at 248x120)

434x210 558x270

 Small

logo

Tile used in zoomed-out and “all apps”

views of the Start screen, and in the

Search and Share panes if the app

supports those contracts. Also used on

the app tile if you elect to show a logo

instead of the app name in the lower

left cover of the tile.

30x30 (+80%

scale at

24x24)

42x42 54x54

 Show

name

Specifies whether to show the app

name on your app tile (both, neither,

or the single- or double-wide

specifically). Set this to “no logo” if

your tile images includes your app

name.

n/a n/a n/a

90

http://msdn.microsoft.com/en-us/library/windows/apps/hh465338

 Short

name

Optional: if provided, is used for the

name on the tile in place of the Display

Name, as Display Name may be too

long for a single-wide tile

n/a n/a n/a

 Fore-

ground

text

Color of name text shown on the tile if

applicable (see Show name). Options

are Light and Dark. There must be a 1.5

contrast ration between this and the

background color

n/a n/a n/a

 Back-

ground

color

Color that will be shown for

transparent areas of any tile images,

buttons in app dialogs, notification

backgrounds, and a few other places.

Also provides the splash screen

background color unless that is set

separately.

n/a n/a n/a

 Notifi-

cations

Badge

logo

Shown next to a badge notification to

identify the app on the lock screen

(uncommon, as this requires additional

capabilities to be declared).

24x24 33x33 43x43

 Splash

screen

Splash

screen

When the app is launched, this image

is shown in the center of the screen

against the Background color. The

image can utilize transparency if

designed.

620x300 868x420 1116x540

 Back-

ground

color

Color that will fill the majority of the

splash screen; if not set, the App UI

Background color is used.

n/a n/a n/a

In the table, note that 80% scale tile graphics are used in specific cases like low DPI modes and

should be provided with other scaled images. Note also that there are additional graphics besides the

Packaging Logo (first item in the table) that you’ll need when uploading an app to the Windows Store.

See the App images topic in the docs under “Promotional images” for full details.

When saving these files, append .scale-80, .scale-100, .scale-140, and .scale-180 to the filenames,

before the file extension, as in splashscreen.scale-140.png. This allows you, both in the manifest and

elsewhere in the app, to refer to an image with just the base name, such as splashscreen.png, and

Windows will automatically load the appropriate scaled variant. Otherwise it looks for one without the

suffix. No code needed! This is demonstrated in the HereMyAm3b example, where I’ve added all the

various branded graphics (with some additional text in each graphic to show the scale). To test these

different graphics, use the set resolution/scaling button in the simulator—refer back to Figure 2-5—to

choose different pixel densities on a 10.6” screen (1366 x 768 =100%, 1920 x 1080 = 140%, and 2560 x

1440 = 180%). You’ll also see the 80% scale used on the other display choices, including the 23” and

27” settings. In all cases, the setting affects which images are used on the Start screen and the splash

screen, but note that you might need to exit and restart the simulator to see the new scaling take

effect.

One thing you might also notice is that full-color photographic images, as I’m using in

HereMyAm3b here, don’t scale down very well to the smallest sizes (Store logo and small logo). This is

one reason why such logos are typically simpler with WinRT app design, so hopefully your designers do

91

http://msdn.microsoft.com/en-us/library/windows/apps/hh846296.aspx

a better job than I have!

Activation Event Sequence
As the app host is built on the same parsing and rendering engines as Internet Explorer, the general

sequence of activation events is more or less what a web application sees in a browser. Actually, it’s

more rather than less! When you launch an app from its tile, here’s the process as Windows sees it:

1. Windows displays a splash screen using information from the app manifest.

2. Windows launches the app host, identifying the app to launch.

3. The app host retrieves the app’s Start Page setting (see the Application UI tab in the manifest

editor), which identifies the HTML page to load.

4. The app host loads that page along with referenced stylesheets and script (deferring script

loading if indicated in the markup). Here it’s important that all files are properly encoded for

best startup performance. (See the sidebar below.)

5. document.DOMContentLoaded fires. You can use this to do further initialization specifically

related to the DOM, if desired (not common).

6. Windows.UI.WebUI.WebUIApplication.onactivated fires. This is typically where you’ll do all

your startup work, instantiate WinJS and custom controls, initialize state, and so on.

7. The splash screen is hidden once the activated event handler returns (unless the app has

requested a deferral as discussed later in the “Activation Deferrals” section).

8. body.onload fires. This is typically not used in WinRT apps, though it might be utilized by

imported code or third party libraries.

What’s also very different is that an app can again be activated for many different purposes, such as

contracts and associations, even while it’s already running. As we’ll see in later chapters, the specific

page that gets loaded (step 3) can vary by contract, and if a particular page is already running, it will

receive only the Windows.UI.WebUI.WebUIApplication.onactivated event and not the others.

For the time being, though, let’s concentrate on how we work with this core launch process, and

because you’ll generally do your initialization work within the activated event, let’s examine that

structure more closely.

Sidebar: File Encoding for Best Startup Performance

To optimize bytecode generation when parsing HTML, CSS, and JavaScript, the Windows Store

requires that all .html, .css, and .js files are saved with Unicode UTF-8 encoding. This is the default

for all files created in Visual Studio or Blend. If you’re importing assets from other sources, check

this encoding: in Visual Studio’s File Save As dialog (Blend doesn’t have this at present), select

Save with Encoding and set that to Unicode (UTF-8 with signature) – Codepage 65001. The

92

Windows App Certification Kit will issue warnings if it encounters files without this encoding.

Along these same lines, minification of JavaScript isn’t particularly important for WinRT apps.

Because an app package is downloaded from the Windows Store as a unit and often contains

other assets that are much larger than your code files, minification won’t make much difference

there. Once the package is installed, bytecode generation means that the package’s JavaScript

has already been processed and optimized, so minification won’t have any additional

performance impact.

Activation Code Paths
As we saw in Chapter 2, new projects created in Visual Studio or Blend give you the following code

(with a few more comments) in default.js:

(function () {

 "use strict";

 var app = WinJS.Application;

 var activation = Windows.ApplicationModel.Activation;

 app.onactivated = function (args) {

 if (args.detail.kind === activation.ActivationKind.launch) {

 if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 // TODO: This application has been newly launched. Initialize

 // your application here.

 } else {

 // TODO: This application has been reactivated from suspension.

 // Restore application state here.

 }

 args.setPromise(WinJS.UI.processAll());

 }

 };

 app.oncheckpoint = function (args) {

 };

 app.start();

})();

Let’s go through this piece by piece to review what we already learned and complete our

understanding of this essential code structure:

93

 (function () { … })(); is again the JavaScript module pattern.

 "use strict" instructs the JavaScript interpreter to apply Strict Mode, a feature of

ECMAScript 5. This checks for sloppy programming practices (like using implicitly

declared variables), so it’s a good idea to leave it in place.

 var app = WinJS.Application; and var activation = Windows.Application-

Mode.Activation; both create substantially shortened aliases for commonly used fully

qualified namespaces. This is a common practice to simplify multiple references to the

same part of WinJS or WinRT.

 app.onactivated = function (args) {…} assigns a handler for the

WinJS.UI.onactivated event, which is a wrapper for

Windows.UI.WebUI.WebUIApplication.onactivated. In this handler:

 args.detail.kind identifies the type of activation.

 args.detail.previousExecutionState identifies the state of the app prior to this

activation, which determines whether to reload state.

 WinJS.UI.processAll instantiates WinJS controls—that is, elements that contain a

data-win-control attribute, as we’ll cover in Chapter 4.

 args.setPromise instructs Windows to wait until WinJS.UI.processAll is complete

before removing the splash screen. (See “Activation Deferrals” later in this chapter.)

 app.oncheckpoint gets an empty handler in the template; we’ll cover this in the “App

Lifecycle Transition Events” section later in this chapter.

 app.start() (WinJS.Application.start()) initiates processing of events that WinJS

queues during startup.

Notice how we’re not directly handling any of the events that Windows is firing, like

DOMContentLoaded or Windows.UI.WebUI.WebUIApplication.onactivated. Are we just ignoring

those events? Not at all: one of the convenient services that WinJS offers, through

WinJS.UI.Application, is a simplified structure for activation and other app lifetime events. Entirely

optional, but very helpful.

With start, for example, a couple of things are happening. First, the WinJS.Application object

listens for a variety of events that come from different sources (the DOM, WinRT, etc.) and coalesces

them into a single object with which you register your own handlers. Second, when

WinJS.Application receives activation events, it doesn’t just pass them on to the app’s handlers,

because your handlers might not, in fact, have been set up yet. So it queues those events until the app

says it’s really ready by calling start. At that point WinJS goes through the queue and fires those

events. That’s really all there is to it.

As the template code shows, apps typically do most of their initialization work within the activated

94

http://msdn.microsoft.com/en-us/library/br230269.aspx

event, but there are a number of potential code paths depending on the values in args.details (an

IActivatedEventArgs object). If you look at the documentation for

WinJS.Application.onactivated, you’ll see that the exact contents of args.details depends on

specific kind of activation. All activations, however, share three common properties:

args.details

Property

Type (in Windows.Application-

Model.Activation)

Description

Kind ActivationKind The reason for the activation. The possibilities are

launch (most common); search,

shareTarget, file, protocol,

fileOpenPicker, fileSavePicker,

contactPicker, and cachedFileUpdater

(for servicing contracts); and device,

printTaskSettings, and cameraSettings

(generally used with device apps). For each

supported activation kind, the app will have an

appropriate initialization path.

previousExecutionState ApplicationExecutionState The state of the app prior to this activation. Values

are notRunning, running, suspended,

terminated, and closedByUser. Handling the

terminated case is most common because that’s the

one where you want to restore previously saved state

(see “App Lifecycle Transition Events”).

splashScreen SplashScreen Contains an ondismissed property to assign a

handler that to perform other actions when the

system splash screen is dismissed. This also contains

an imageLocation property

(Windows.Foundation.Rect) with

coordinates where the splash screen image was

displayed, as noted in “Extended Splash Screens.”

Additional properties provide relevant data for the activation. For example, launch provides the

tileId and arguments, which are needed with secondary tiles. (See Chapter 13, “Tiles, Notifications,

the Lock Screen, and Background Tasks”). The search kind (the next most commonly used) provides

queryText and language, protocol provides a uri, and so on. We’ll see how to use many of these in

the proper context, and sometimes they apply to altogether different pages than default.html. What’s

contained in the templates (and what we’ve already used for an app like Here My Am!) is primarily to

handle normal startup from the app tile (or within Visual Studio’s debugger).

WinJS.Application Events
WinJS.Application isn’t concerned only with activation—its purpose is to centralize events from

several different sources and turn them into events of its own. Again, this enables the app to listen to

events from a single source (either assigning handlers via addEventListener(<event>) or on<event>

properties; both are supported). Here’s the full rundown on those events and when they’re fired (if

queued, the event is fired within WinJS.Application.start):

 activated Queued in the local context for Windows.UI.WebUI.WebUIApplication.-

onactivated. In the web context, where WinRT is not applicable, this is instead queued

for DOMContentLoaded (where the launch kind will be launch and

95

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.iactivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br212679.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.activationkind.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx

previousExecutionState is set to notRunning).

 loaded Queued for DOMContentLoaded in all contexts;20 in the web context, will be

queued prior to activated.

 ready Queued after loaded and activated. This is the last one in the activation

sequence.

 error Fired if there’s an exception in dispatching another event. (If the error is not

handled here, it’s passed onto window.onerror.)

 checkpoint This tells the app when to save the state it needs to restart from a

previous state of terminated. It’s fired in response to both the document’s

beforeunload event, as well as Windows.UI.WebUI.WebUIApplication.onsuspending.

 unload Also fired for beforeunload after the checkpoint event is fired.

 settings Fired in response to Windows.UI.ApplicationSettings.SettingsPane.-

oncommandsrequested. (See Chapter 8, “State, Settings, Files, and Documents.”)

With most of these events (except error and settings), the args you receive contains a method

called setPromise. If you need to perform an async operation within an event handler (like an

XmlHttpRequest), you can obtain the promise for that work and hand it off to setPromise instead of

calling its then or done yourself. WinJS will then not process the next event in the queue until that

promise is fulfilled. Now to be honest, there’s no actual difference between this and just calling done on

the promise yourself within the loaded, ready, and unload events. It does make a difference with

activated and checkpoint (specifically the suspending case) because Windows will otherwise assume

that you’ve done everything you need as soon as you return from the handler; more on this in the

“Activation Deferrals” section. So, in general, if you have async work within these events handlers, it’s a

good habit to use setPromise. Because WinJS.UI.processAll is itself an async operation, the

templates wrap it with setPromise so that the splash screen isn’t removed until WinJS controls have

been fully instantiated.

Anyway, I think you’ll generally find WinJS.Application to be a useful tool in your apps, and it also

provides a few more features as documented on the WinJS.Application page. For example, it provides

local, temp, roaming, and sessionState properties, which are helpful for managing state, as we’ll see

later on in this chapter and in Chapter 8.

The other bits are the queueEvent and stop methods. The queueEvent method drops an event into

the queue that will get dispatched (after any existing queue is clear) to whatever listeners you’ve set up

on the WinJS.Application object. Events are simply identified with a string, so you can queue an

event with any name you like, and call WinJS.Application.addEventListener with that same name

20 There is also the WinJS.Utilities.ready API through which you can specifically set a callback that’s called for

DOMContentLoaded. This is used within WinJS, in fact, to guarantee that any call to WinJS.UI.processAll is processed

after DOMContentLoaded.

96

http://msdn.microsoft.com/en-us/library/windows/apps/br229774.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211903.aspx

anywhere else in the app. This can be useful for centralizing custom events that you might invoke both

during startup and at other points during execution without creating a separate global function for

that purpose. It’s also a powerful means through which separately defined, independent components

can raise events that get aggregated into a single handler.

As for stop, this is provided to help with unit testing so that you can simulate different activation

sequences without having to relaunch the app and somehow simulate the right conditions when it

restarts. When you call stop, WinJS removes its listeners, clears any existing event queue, and clears the

sessionState object, but the app continues to run. You can then call queueEvent to populate the

queue with whatever events you like and then call start again to process that queue. This process can

be repeated as many times as needed.

Extended Splash Screens
Now, though the default splash screen helps keep the user engaged, they won’t stay engaged if that

same splash screen stays up for a really long time. In fact, “a really long time” for the typical consumer

amounts to all of 15 seconds, at which point they’ll pretty much start to assume that the app has hung

and return to the Start screen to launch some other app that won’t waste their afternoon.

In truth, so long as the user keeps your app in the foreground and doesn’t switch away, Windows

will give you all the time you need. But if the user switches to the Start screen or another app, you’re

subject to a 15-second timeout. If you’re not in the foreground, Windows will wait only 15 seconds for

an app to get through app.start and the activated event, at which point your home page should be

rendered. Otherwise, boom! Windows automatically terminates your app.

The first consideration, of course, is to optimize your startup process to be as quick as possible. Still,

sometimes an app really needs more than 15 seconds to get going, especially on its first run, so it

should let the user know that something is happening. For example, an app package might include a

bunch of compressed data when downloaded from the Store, which it needs to expand onto the local

file system on first run so that subsequent launches are much faster. Many games do this with graphics

and other resources (optimizing the local storage for device characteristics); other apps might to

populate a local IndexedDB from data in a JSON file or download and cache a bunch of data from an

online service.

It’s also possible that the user is trying to launch your app shortly after rebooting the system, in

which case there might be lots of disk activity going on. If you load data from disk in your activation

path, your process could take much longer than usual.Such apps thus implement an extended splash

screen, which is just a fancy term for some clever fakery. Simply said, if the app determines that it needs

more time, it hides its real home page behind another div that looks exactly like the system-provided

splash screen but that is under the app’s control so that it can display progress indicators or other

custom UI while initialization continues.

In general, Microsoft recommends that the extended splash screen initially matches the system

splash screen to avoid visual jumps. (See Guidelines and checklist for splash screens.) At this point many

97

http://msdn.microsoft.com/en-us/library/windows/apps/hh465338.aspx

apps simply add a progress indicator with some kind of a “Please go grab a drink, do some jumping

jacks, or enjoy a few minutes of meditation while we load everything” message. Matching the system

splash screen, however, doesn’t mean that the extended splash screen has to stay that way. A number

of apps start with a replica of the system splash screen and then animate the graphic to one side to

make room for other elements. Other apps fade out the initial graphic and start a video.

Making a smooth transition is the purpose of the args.detail.splashScreen object included with

the activated event. This object—see Windows.ApplicationModel.Activation.-

SplashScreen—contains an imageLocation property, which is a Windows.Foundation.Rect

containing the placement and size of the splash screen image. Because your app can be run on a

variety of different display sizes, this tells you where to place the same image on your own page, where

to start an animation, and/or where to place things like messages and progress indicators relative to

that image.

The splashScreen object also provides an ondismissed event so that you can perform specific

actions when the system-provided splash screen is dismissed and your first page comes up. Typically,

this is useful to trigger the start of on-page animations, starting video playback, and so on.

We won’t have a need to implement an extended splash screen in this chapter’s examples, but you

can refer to the Splash Screen sample in the SDK. One more detail that’s worth mentioning is that

because an extended splash screen is just a page in your app, it can be placed into the various view

states such as snap view. So, as with every other page in your app, make sure your extended splash

screen handles those states!

Activation Deferrals

As mentioned earlier, once you return from the activated event, Windows assumes that you’ve done

everything you need on startup. By default, then, Windows will remove its splash screen and make your

home page visible. But what if you need to complete one or more async operations before that home

page is really ready, such as completing WinJS.UI.processAll?

This, again, is what the args.setPromise method inside the activated event is for. If you give your

async operation’s promise to setPromise, Windows will wait until that promise is fulfilled before taking

down the splash screen. The templates use this to keep the system splash screen up until

WinJS.UI.processAll is complete.

As setPromise just waits for a single promise to complete, how do you handle multiple async

operations? You can do this a couple of ways. First, if you need to control the sequencing of those

operations, you can chain them together as we already know how to do—just be sure that the end of

the chain is a promise that becomes the argument to setPromise—don’t call its done method (use

then if needed)! If the sequence isn’t important but you need all of them to complete, you can

combine those promises by using WinJS.Promise.join , passing the result to setPromise. If you need

only one of the operations to complete, you can use WinJS.Promise.any instead—join and any are

discussed in the last section of this chapter.

98

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx
http://code.msdn.microsoft.com/windowsapps/Splash-screen-sample-89c1dc78
http://code.msdn.microsoft.com/windowsapps/Splash-screen-sample-89c1dc78

The other means is to register more than one handler with WinJS.Application.onactivated; each

handler will get its own event args and its own setPromise function, and WinJS will combine those

returned promises together with WinJS.Promise.join.

Now the setPromise method coming from WinJS is actually implemented using a more generic

deferral mechanism from WinRT. The args given to Windows.UI.WebUI.WebUIApplication.-

onactivated (the WinRT event) contains a little method called getDeferral (technically

Windows.UI.WebUI.ActivatedOperation.getDeferral). This function returns a deferral object that

then contains a complete method, and Windows will leave the system splash screen up until you call

that method (although this doesn’t change the fact that users are impatient and your app is still subject

to the 15-second limit!). The code looks like this:

//In the activated handler

var activatedDeferral = Windows.UI.WebUI.ActivatedOperation.getDeferral();

//After initialization is complete

activatedDeferral.complete();

Of course, setPromise ultimately does exactly this, and if you add a handler for the WinRT event

directly, you can use the deferral yourself.

App Lifecycle Transition Events and Session State

To an app—and the app’s publisher—a perfect world might be one in which consumers ran that app

and stayed in that app forever (making many in-app purchases, no doubt!). Well, the hard reality is that

this just isn’t reality. No matter how much you’d love it to be otherwise, yours is not the only app that

the user will ever run. After all, what would be the point of features like sharing or snapping if you

couldn’t have multiple apps running together? For better or for worse, users will be switching between

apps, changing view states, and possibly closing your app. But what you can do is give energy to the

“better” side of the equation by making sure your app behaves well under all these circumstances.

The first consideration is focus, which applies to controls in your app as well as to the app itself.

Here you can simply use the standard HTML blur and focus events. For example, an active game or

one with a timer would typically pause itself on blur and perhaps restart again on focus.

A similar but different condition is visibility. An app can be visible but not have the focus, as when

it’s snapped. In such cases an app would continue things like animations or updating a feed, but it

would stop such activities when visibility is lost (that is, when the app is actually in the background). For

this, use the visibilitychange event in the DOM API, and then examine the visibilityState

property of the window or document object, as well as the document.hidden property. (The event works

for visibility of all other elements as well.) A change in visibility is also a good time to save user data like

documents or game progress.

For view state changes, an app can pick these up in several ways. As shown in the Here My Am!

example, an app typically uses media queries (in declarative CSS or in code through media query

99

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.webui.activateddeferral.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441213.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh453385.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh453385.aspx

listeners) to reconfigure layout and visibility of elements, which is really all that view states should

affect. (Again, view state changes never change the mode of the app, just layout and object visibility.)

At any time, an app can also retrieve the current view state through Windows.UI.ViewManagement.-

ApplicationView.value. This returns one of the Windows.UI.ViewManagement.Application-

ViewState values: snapped, filled, fullScreenLandscape, and fullScreenPortrait; details in

Chapter 6, “Layout.”

When your app is closed (the user swipes top to bottom or presses Alt+F4), it’s important to note

that the app is first moved off-screen (hidden), suspended, and then terminated, so the typical DOM

events like unload aren’t much use. A user might also kill your app in Task Manager, but this won’t

generate any events in your code either. Remember also that apps should not close themselves, as

discussed before, but they can use MSApp.terminateApp to close due to unrecoverable conditions.

Suspend, Resume, and Terminate
Beyond focus, visibility, and view states, three other critical moments in an app’s lifetime exist:

 Suspending When an app is not visible (in any view state), it will be suspended after

five seconds (according to the wall clock) to conserve battery power. This means it

remains wholly in memory but won’t be scheduled for CPU time and thus won’t have

network or disk activity (except when using specifically allowed background tasks).

When this happens, the app receives the

Windows.UI.WebUI.WebUIApplication.onsuspending event, which is also exposed

through WinJS.Application.oncheckpoint. Apps must return from this event within

the five-second period, or Windows will assume the app is hung and terminate it

(period!). During this time, apps save transient session state and should also release any

exclusive resources acquired as well, like file handles or device access. (See How to

suspend an app.)

 Resuming If the user switches back to a suspended app, it receives the Windows.UI.-

WebUI.WebUIApplication.onresuming event. (This is not surfaced through

WinJS.Application because it’s not commonly used and WinJS has no value to add.)

We’ll talk more about this in the “Data from Services and WinJS.xhr” section coming up

soon, because the need for this event often arises when using services. In addition, if

you’re tracking a user’s location using the Geolocator, you won’t receive updates unless

you’re using a background task (see Chapter 9, “Input and Sensors”), so you’ll want to

refresh your location reading. There are also times when you might want to refresh your

layout (as we’ll see in Chapter 6), because it is possible for your app to resume directly

into a different view state than when it was suspended. The same goes for refreshing

the state of clipboard commands (as we’ll see in Chapter 12, “Contracts”).

 Terminating When suspended, an app might be terminated if there’s a need for

more memory. There is no event for this, because by definition the app is already

suspended and no code can run.

100

http://msdn.microsoft.com/en-us/library/windows/apps/hh465138.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465138.aspx

It’s very helpful to know that you can simulate these conditions in the Visual Studio debugger by

using the toolbar drop-down shown in Figure 3-7. These commands will trigger the necessary events as

well as set up the previousExecutionState value for the next launch of the app. (Be very grateful for

these controls—there was a time when we didn’t have them, and it was painful to debug these

conditions!)

Figure 3-7 The Visual Studio toolbar drop-down to simulate suspend, resume, and terminate.

We’ve briefly listed those previous states before, but let’s see how those relate to the events that get

fired and the previousExecutionState value that shows up when the app is next launched. This can

get a little tricky, so the transitions are illustrated in Figure 3-8 and the table below describes how the

previousExecutionState values are determined.

Value of previousExecutionState Scenarios

notrunning First run after install from Store.

First run after reboot or log off.

App is launched within 10 seconds of being closed by user (about the time it

takes to hide, suspend, and cleanly terminate the app; if the user relaunches

quickly, Windows has to immediately terminate it without finishing the

suspend operation).

App was terminated in Task Manager while running or closes itself with

MSApp.terminateApp.

running App is currently running and then invoked in a way other than its app tile,

such as Search, Share, secondary tiles, toast notifications, and all other

contracts. When an app is running and the user taps the app tile, Windows

just switches to the already-running app and without triggering activation

events (though focus and visibilitychange will both be raised).

suspended App is suspended and is invoked in a way other than the app tile (as above

for running). In addition to focus/visibility events, the app will also receive

the resuming event.

terminated App was previously suspended and then terminated by Windows due to

resource pressure. Note that this does not apply to

MSApp.terminateApp because an app would have to be running to call

that function.

closedByUser App was closed by an uninterrupted close gesture (swipe down or Alt+F4).

An “interrupted” close is when the user switches back to the app within 10

seconds, in which case the previous state will be notrunning instead.

101

Figure 3-8 Process lifecycle events and previousExecutionState values.

The big question for the app, of course, is not so much what determines the value of

previousExecutionState as what it should actually do with this value during activation. Fortunately,

that story is a bit simpler and one that we’ve already seen in the template code:

 If the activation kind is launch and the previous state is notrunning or closedByUser,

the app should start up with its default UI and apply any persistent settings (such as

those in its Settings panel). With closedByUser, there might be scenarios where the app

should perform additional actions (such as updating cached data) after the user

explicitly closed the app and left it closed for a while.

 If the activation kind is launch and the previous state is terminated, the app should

start up in the same state as when it was last suspended.

 For launch and other activation kinds that include additional arguments or parameters

(as with secondary tiles, toast notifications, and contracts), it should initialize itself to

serve that purpose by using the additional parameters. The app might already be

running, so it won’t necessarily initialize its default state again.

The second requirement above is exactly why the templates provide a code structure for this case

along with a checkpoint handler. We’ll see the full details of saving and reloading state in Chapter 8.

The basic idea is that an app should, when being suspended, save whatever transient session state it

would need to rehydrate itself after being terminated like form data, scroll positions, the navigation

stack, and other variables. This is because although Windows might have suspended the app and

dumped it from memory, it’s still running in the mind of the user. Thus, when users activate the app

102

again for normal use (activation kind is launch, rather than through a contract), they expect that app

to be right where it was before. When an app gets suspended, it must save whatever state is necessary

to make this possible, and it must restore that state when activated under these conditions. (For more

on app design where this is concerned, see Guidelines for app suspend and resume.)Be clear that if the

user directly closes the app with Alt+F4 or the swipe-down gesture, the suspending/checkpoint

events will also be raised, so the app still saves state. In these cases, however, the app will be

automatically terminated after being suspended, and it won’t be asked to reload that state when it’s

restarted because previousExecutionState will be notRunning or closedByUser.

The best practice is actually to save session state incrementally (as it changes) to minimize the work

needed within the suspending event, because you have only five seconds to do it. Mind you, this

session state does not include data that is persistent across sessions (like user files, high scores, and app

settings) because an app would always reload or reapply such persistent data in each activation path.

The only concern here is maintaining the illusion that the app was always running.

You always save session state to your appdata folders or settings containers, which are provided by

the Windows.Storage.ApplicationData API. Again, we’ll see all the details in Chapter 8. What I want

to point out here are a few helpers that WinJS provides for all this.

First is the WinJS.Application.checkpoint event, which provides a single convenient place to save

both session state and any other persistent data you might have.

Second is the WinJS.Application.sessionState object. On normal startup, this is just an empty

object to which you can add whatever properties you like, including other objects. A typical strategy is

to just use this in place of other variables, so there’s no need to copy variables into it separately. Within

the checkpoint event, WinJS automatically serializes the contents of this object (using

JSON.stringify) into a file within your local appdata folder. Then, when the app is activated with the

previous state of terminated, WinJS automatically rehydrates the sessionState object so that

everything you put there is once again available. If you’ve used this object for storing variables, you

only need to avoid settings those values back to their defaults when reloading your state.

Note that because the WinJS ensures that its own handler for checkpoint is always called after your

app gets the event, you can be assured that WinJS will save whatever you write into sessionState at

any time before your checkpoint handler returns.

Third, if you don’t want to use the sessionState object, the WinJS.Application object makes it

easy to write your own files without having to use async WinRT APIs. Specifically, it provides (as shown

in the documentation) local, temp, and roaming objects that each have methods called readText,

writeText, exists, and remove. These objects each work within their respective appdata folders and

provide a simplified API for file I/O.

A final aid ties into a deferral mechanism like the one for activation. The deferral is important

because Windows will suspend your app as soon as you return from the suspending event, which could

be less than five seconds. So, the event args for WinJS.Application.oncheckpoint provides a

setPromise method that ties into the underlying WinRT deferral. As before, you pass a promise for an

103

http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.applicationdata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229774.aspx

async operation (or combined operations) to setPromise, which in turn calls the deferral’s complete

method once the promise is fulfilled.

On the WinRT level, the event args for suspending contains an instance of Windows.UI.WebUI.-

WebUIApplication.SuspendingOperation. This provides a getDeferral method that returns a

deferral object with a complete method as with activation.

Well, hey! That sounds pretty good—is this perhaps a sneaky way to circumvent the restriction on

running WinRT apps in the background? Will my app keep running indefinitely if I request a deferral by

never calling complete?

No such luck, amigo. Accept my apologies for giving you a fleeting moment of exhilaration!

Deferral or not, five seconds is the most you’ll ever get. Still, you might want to take full advantage of

that time, perhaps to first perform critical async operations (like flushing a cache) and then to attempt

other noncritical operations (like a sync to a server) that might greatly improve the user experience. For

such purposes, the suspendingOperation object also contains a deadline property, a Date value

indicating the time in the future when Windows will forcibly suspend you regardless of any deferral.

Once the first operation is complete, you can check if you have time to start start another, and so on.

Basic Session State in Here My Am!
To demonstrate some basic state handling, I’ve made a few changes to Here My Am! as given in the

HereMyAm3c example. Here we have two pieces of information we care about: the variables

lastCapture (a StorageFile with the image) and lastPosition (a set of coordinates). We want to

make sure we save these when we get suspended so that we can properly apply those values when the

app gets launched with the previous state of terminated.

With lastPosition, we can just move this into the sessionState object by prepending

app.sessionState. to the name—in the completed handler for getGeopositionAsync, for example:

gl.getGeopositionAsync().done(function (position) {

 app.sessionState.lastPosition = {

 latitude: position.coordinate.latitude,

 longitude: position.coordinate.longitude

 };

 updatePosition();

 }, function (error) {

 console.log("Unable to get location.");

 });

}

Because we’ll need to set the map location from here and from previously saved coordinates, I’ve

moved that bit of code into a separate function that also makes sure a location exists in sessionState:

function updatePosition() {

 if (!app.sessionState.lastPosition) {

 return;

 }

104

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.suspendingoperation.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.suspendingoperation.aspx

 callFrameScript(document.frames["map"], "pinLocation",

 [app.sessionState.lastPosition.latitude, app.sessionState.lastPosition.longitude]);

}

Note also that app.sessionState is initialized to an empty object by default, { }, so lastPosition

will be undefined until the geolocation call succeeds. This also works to our advantage when

rehydrating the app. Here’s what the previousExecutionState conditions look like for this:

if (args.detail.previousExecutionState !==

 activation.ApplicationExecutionState.terminated) {

 //Normal startup: initialize lastPosition through geolocation API

} else {

 //WinJS reloads the sessionState object here. So try to pin the map with the saved location

 updatePosition();

}

Because we stored lastPosition in sessionState, it will have been automatically saved in

WinJS.Application.checkpoint when the app ran previously. When we restart from terminated,

WinJS automatically reloads sessionState; if we’d saved a value there previously, it’ll be there again

and updatePosition just works.

You can test this by running the app with these changes and then using the Suspend and shutdown

option on the Visual Studio toolbar. Set a breakpoint on the updatePosition call above, and then

restart the app in the debugger. You’ll see that sessionState.lastPosition is initialized at that point.

With the last captured picture, we don’t need to save the StorageFile, just the pathname: we

copied the file into our local appdata (so it persists across sessions already) and can just use the

ms-appdata:// URI scheme to refer to it. When we capture an image, we just save that URI into

sessionState.imageURL (the property name is arbitrary) at the end of the promise chain inside

capturePhoto:

that.src = "ms-appdata:///local/HereMyAm/" + newFile.name;

app.sessionState.imageURL = that.src;

This value will also be reloaded when necessary during startup, so we can just initialize the img src

accordingly:

if (app.sessionState.imageURL) {

 document.getElementById("photo").src = app.sessionState.imageURL;

}

This will initialize the image display from sessionState, but we also need to initialize lastCapture

so that the same image is available through the Share contract. For this we need to also save the full

file path so we can re-obtain the StorageFile through Windows.Storage.StorageFile.-

getFileFromPathAsync (which doesn’t work with ms-appdata:// URIs). So, in capturePhoto:

app.sessionState.imagePath = newFile.path;

And during startup:

105

if (app.sessionState.imagePath) {

 Windows.Storage.StorageFile.getFileFromPathAsync(app.sessionState.imagePath)

 .done(function (file) {

 lastCapture = file;

 if (app.sessionState.imageURL) {

 document.getElementById("photo").src = app.sessionState.imageURL;

 }

 });

I’ve placed the code to set the img src inside the completed handler here because we want the

image to appear only if we can also access its StorageFile again for sharing. Otherwise the two

features of the app would be out of sync.

In all of this, note again that we don’t need to explicitly reload these variables within the

terminated case because WinJS reloads sessionState automatically. If we managed our state more

directly, such as storing some variables in roaming settings within the checkpoint event, we would

reload and apply those values at this time.

Data from Services and WinJS.xhr

Though we’ve seen examples of using data from an app’s package (via URIs or Windows.-

ApplicationModel.Package.current.installedLocation) as well as in appdata, it’s very likely that

your app will incorporate data from a web service and possibly send data to services as well. For this,

the most common method is to employ XmlHttpRequest. You can use this in its raw (async) form, if

you like, or you can save yourself a whole lot of trouble by using the WinJS.xhr function, which

conveniently wraps the whole business inside a promise.

Making the call is quite easy, as demonstrated in the SimpleXhr example for this chapter. Here we

use WinJS.xhr to retrieve the RSS feed from the Windows 8 developer blog:

WinJS.xhr({ url: "http://blogs.msdn.com/b/windowsappdev/rss.aspx" })

 .done(processPosts, processError, showProgress);

That is, give WinJS.xhr a URI and it gives back a promise that delivers its results to your completed

function (in this case processPosts) and will even call a progress function. With the former, the result

contains a responseXML property, which is a DomParser object. With the latter, the event object

contains the current XML in its response property, which we can easily use to display a download

count:

function showProgress(e) {

 var bytes = Math.floor(e.response.length / 1024);

 document.getElementById("status").innerText = "Downloaded " + bytes + " KB";

}

The rest of the app just chews on the response text looking for item elements and extracting and

displaying the title, pubDate, and link fields. With a little styling (see default.css), and utilizing the

106

WinJS typography style classes of win-type-x-large (for title), win-type-medium (for pubDate), and

win-type-small (for link), we get a quick app that looks like Figure 3-9. You can look at the code to

see the details.21

Figure 3-9 The output of the SimpleXhr app.

If you try this app, it’s clear that it can use more work, but for a fuller demonstration of XHR and

related matters, refer to the XHR, handling navigation errors, and URL schemes sample). You might also

be interested in the tutorial called How to create a mashup in the docs. For the moment, what

concerns is not so much the mechanics of talking to services but the implications of suspend and

resume.

In particular, an app cannot predict how long it will stay suspended before being resumed or before

being terminated and restarted.

In the first case, an app that gets resumed will have all its previous data still in memory. It very much

needs to decide, then, whether that data has become stale since the app was suspended or whether

sessions with other servers have exceeded their timeout periods. You can also think of it this way: after

what period of time will users not remember nor care what was happening the last time they saw your

app? If it’s a week or longer, it might be reasonable to resume or restart in a default state. Then again,

if you pick up right back where they were, users gain increasing confidence that they can leave apps

21 It’s worth mentioning that WinRT has a specific API for dealing with RSS feeds in Windows.Web.Syndication. You can use

this if you want a more structured means of dealing with such data sources. As it is, JavaScript has intrinsic APIs to work

with XML, so it’s really your choice. In a case like this, the syndication API along with Windows.Web.AtomPub and

Windows.Data.Xml are very much needed by Windows 8 apps written in other languages that don’t have the same

built-in features as JavaScript.

107

http://code.msdn.microsoft.com/windowsapps/XHR-handling-navigation-50d03a7a
http://msdn.microsoft.com/en-us/library/windows/apps/hh452745.aspx

running for a long time and not lose anything. Or you can compromise and give the user options to

choose from. You’ll have to think through your scenario, of course, but if there’s any doubt, resume

where the app left off.

To check elapsed time, save a timestamp on suspend (from new Date().getTime()), get another

timestamp in the resuming event, take the difference, and compare that against your desired refresh

period. A Stock app, for example, might have a very short period. With the Windows 8 developer blog,

on the other hand, new posts don’t show up more than once a day, so a one-hour period is sufficient

to keep up-to-date and to catch new posts within a reasonable timeframe.

This is implemented in SimpleXhr by first placing the WinJS.xhr call into a separate function called

downloadPosts, which is called on startup. Then we register for the resuming event with WinRT:

Windows.UI.WebUI.WebUIApplication.onresuming = function () {

 app.queueEvent({ type: "resuming" });

}

Remember how I said we could use WinJS.Application.queueEvent to raise our own events to the

app object? Here’s a great example. WinJS.Application doesn’t automatically wrap the resuming

event because it has nothing to add to that process. But the code below accomplishes exactly the same

thing, allowing us to register an event listener right alongside other events like checkpoint:

app.oncheckpoint = function (args) {

 //Save in sessionState in case we want to use it with caching

 app.sessionState.suspendTime = new Date().getTime();

};

app.addEventListener("resuming", function (args) {

 //This is a typical shortcut to either get a variable value or a default

 var suspendTime = app.sessionState.suspendTime || 0;

 //Determine how much time has elapsed in seconds

 var elapsed = ((new Date().getTime()) - suspendTime) / 1000;

 //Refresh the feed if > 1 hour (or use a small number for testing)

 if (elapsed > 3600) {

 downloadPosts();

 }

});

To test this code, run it in Visual Studio’s debugger and set breakpoints within these events. Then

click the suspend button in the toolbar (the pause icon shown in Figure 3-7), and you should enter the

checkpoint handler. Wait a few seconds and click the resume button (play icon), and you should be in

the resuming handler. You can then step through the code and see that the elapsed variable will have

the number of seconds that have passed, and if you modify that value (or change 3600 to a smaller

number), you can see it call downloadPosts again to perform a refresh.

What about launching from the previously terminated state? Well, if you didn’t cache any data from

before, you’ll need to refresh it again anyway. If you do cache some of it, your saved state (such as the

108

timestamp) helps you decide whether to use the cache or load data anew.

It’s worth mentioning here that you can use HTML5 mechanisms like localStorage, indexedDB, and

the app cache for caching purposes; data for these is stored within your local appdata automatically.

And speaking of databases, you may be wondering what’s available for WinRT apps other than

IndexedDB. One option is SQLite, as described in Using SQLite in a WinRT app (on the blog of Tim

Heuer, one of the Windows 8 engineers). You can also use the OData Library for JavaScript that’s

available from http://www.odata.org/libraries. It’s one of the easiest ways to communicate with an

online SQL Server database (or any other with an OData service), because it just uses XmlHttpRequest

under the covers. We’ll come back to this topic in Chapter 8.

Handling Network Connectivity (in Brief)
We’ll be covering network matters in Chapter 14, “Networking,” but there’s one important aspect that

you should be aware of here. What does an app do with changes to network connectivity, such as

disconnection, reconnection, and changes in bandwidth or cost (such as roaming into another provider

area)?

The Windows.Networking.Connectivity APIs supply the details. There are three main ways to

respond to such events:

 First, have a great offline story for when connectivity is lost: cache important data,

queue work to be done later, and continue to provide as much functionality as you can

without a connection. Clearly this is closely related to your overall state management

strategy. For example, if network connectivity was lost while you were suspended, you

might not be able to refresh your data at all, so be prepared for that circumstance!

 Second, listen for network changes to know when connectivity is restored, and then

process your queues, recache data, and so forth.

 Third, listen for network changes to be cost-aware on metered networks. The Windows

Store certification requirements, in fact, have a policy on protecting consumers from

“bill shock” caused by excessive data usage on such networks. The last thing you want,

to be sure, are negative reviews in the Store on issues like this.

On a simpler note, be sure to test your apps with and without network connectivity to catch little

oversights in your code. In Here My Am!, for example, my first versions of the script in map.html didn’t

bother to check whether the remote script for Bing Maps had actually been downloaded. Now it

checks whether the Microsoft namespace (for the Microsoft.Maps.Map constructor) is valid. In

SimpleXhr too, I made sure to provide an error handler to the WinJS.xhr promise so that I could at

least display a simple message.

Tips and Tricks for WinJS.xhr
Without opening the whole can of worms that is XmlHttpRequest, it’s useful here to look at just a

109

http://timheuer.com/blog/archive/2012/05/20/using-sqlite-in-metro-style-app.aspx
http://www.odata.org/libraries
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083

couple of additional points around WinJS.xhr.

First, notice that the single argument to this function is an object that can contain a number of

properties. The url property is the most common, of course, but you can also set the type (defaults to

“GET”) and the responseType for other sorts of transactions, supply user and password credentials, set

headers (such as "If-Modified-Since" with a date to control caching), and provide whatever other

additional data is needed for the request (such as query parameters for XHR to a database). You can

also supply a customRequestInitializer function that will be called with the XmlHttpRequest object

just before it’s sent, allowing you to perform anything else you need at that moment.

Second is setting a timeout on the request. You can use the customRequestInitializer for this

purpose, setting the XmlHttpRequest.timeout property and possibly handling the ontimeout event.

Alternately, as we’ll see in the “Completing the Promises Story” section at the end of this chapter, you

can use the WinJS.Promise.timeout function, which allows you to set a timeout period after which the

WinJS.xhr promise (and the async operation behind it) will be canceled. Canceling is accomplished by

simply calling a promise’s cancel method.

You might have need to wrap WinJS.xhr in another promise, something that we’ll also see at the

end of this chapter. You could do this to encapsulate other intermediate processing with the XHR call

while the rest of your code just uses the returned promise as usual. In conjunction with a timeout, this

can also be used to implement a multiple retry mechanism.

Next, if you need to coordinate multiple XHR calls together, you can use WinJS.Promise.join,

which we’ll again see later on.

We also saw how to process transferred bytes within the progress handler. You can use other data in

the response and request as well. For example, the event args object contains a readyState property.

For release apps, using XHR with localhost: URI’s (local loopback) is blocked by design. During

development, however, when this is very useful, for instance, to debug a service without deploying it,

you can enable this in Visual Studio by opening the project properties dialog (Project menu ->

<project> Properties…), selecting Debugging on the left side, and setting Allow Local Network

Loopback to true.

Finally, it’s helpful to know that for security reasons cookies are automatically stripped out of XHR

responses coming into the local context. One workaround to this is to make XHR calls from a web

context iframe (in which you can use WinJS.xhr) and then to extract the cookie information you need

and pass it to the local context via postMessage. Alternately, you might be able to solve the problem

on the service side, such as implementing an API there that will directly provide the information you’re

trying to extract from the cookies in the first place.

For all other details on this function, refer to the WinJS.xhr function documentation and its links to

associated tutorials.

110

http://msdn.microsoft.com/en-us/library/windows/apps/br229787.aspx

Page Controls and Navigation

Now we come to an aspect of WinRT apps that very much separates them from typical web

applications. In web applications, page-to-page navigation uses <a href> hyperlinks or setting

document.location from JavaScript. This is all well and good; oftentimes there’s little or no state to

pass between pages, and even when there is, there are well-established mechanisms for doing so, such

as HTML5 sessionStorage and localStorage (which work just fine in WinRT apps).

This type of navigation presents a few problems for WinRT apps, however. For one, navigating to a

wholly new page means a wholly new script context—all the JavaScript variables from your previous

page will be lost. Sure, you can pass state between those pages, but managing this across an entire app

likely hurts performance and can quickly become your least favorite programming activity. It’s better

and easier, in other words, for client apps to maintain a consistent in-memory state across pages.

Also, the nature of the HTML/CSS rendering engine is such that a blank screen appears when

switching pages with a hyperlink. Users of web applicationss are accustomed to waiting a bit for a

browser to acquire a new page (I’ve found many things to do with 15-second intervals!), but this isn’t

an appropriate user experience for a fast and fluid WinRT app. Furthermore, such a transition doesn’t

allow animation of various elements on and off the screen, which can help provide a sense of

continuity between pages if that fits with your design.

So, although you can use direct links, WinRT apps typically implement “pages” by dynamically

replacing sections of the DOM wholly within the context of a single page like default.html (which is

akin to how AJAX-based apps work). By doing so, the script context is always preserved and individual

elements or groups of elements can be transitioned however you like. In some cases, it even makes

sense to simply show and hide pages so that you can switch back and forth quickly. Let’s look at the

strategies and tools for accomplishing these goals.

WinJS Tools for Pages and Page Navigation
Windows itself, and the app host, provide no mechanism for dealing with pages—from the system’s

perspective, this is merely an implementation detail for apps to worry about. Fortunately, the engineers

who created WinJS and the templates in Visual Studio and Blend worried about this a lot! As a result,

they’ve provided some marvelous tools for managing bits and pieces of HTML+CSS+JS in the context

of a single container page:

 WinJS.UI.Fragments contains a low-level “fragment-loading” API, the use of which is

necessary only when you want close control over the process (such as which parts of the

HTML fragment get which parent). We won’t cover it in this book; see the

documentation and the Loading HTML Fragments Sample.

 WinJS.UI.Pages is a higher-level API intended for general use and employed by the

templates. Think of this as a generic wrapper around the fragment loader that lets you

easily define a “page control”—simply an arbitrary unit of HTML, CSS, and JS—that you

111

http://msdn.microsoft.com/en-us/library/windows/apps/br229781.aspx
http://code.msdn.microsoft.com/windowsapps/Fragments-91f66b07
http://msdn.microsoft.com/en-us/library/windows/apps/hh770584.aspx

can easily pull into the context of another page as you do other controls.22 They are, in

fact, implemented like other controls in WinJS (as we’ll see in Chapter 4), so you can

declare them in markup, instantiate them with WinJS.UI.process[All], use as many of

them within a single host page as you like, and even nest them.

These APIs provide only the means to load and unload individual pages—they pull HTML in from

other files (along with referenced CSS and JS) and attach the contents to an element in the DOM.

That’s it. To actually implement a page-to-page navigation structure, we need two additional pieces:

something that manages a navigation stack and something that hooks navigation events to the

page-loading mechanism of WinJS.UI.Pages.

For the first piece, you can turn to WinJS.Navigation, which through about 150 lines of

CS101-level code supplies a basic navigation stack. This is all it does. The stack itself is just a list of URIs

on top of which WinJS.Navigation exposes state, location, history, canGoBack, and canGoForward

properties. The stack is manipulated through the forward, back, and navigate methods, and the

WinJS.Navigation object raises a few events—beforenavigate, navigating, and navigated—to

anyone who wants to listen (through addEventListener).23

For the second piece, you can create your own linkage between WinJS.Navigation and

WinJS.UI.Pages however you like. In fact, in the early stages of app development of Windows 8, even

prior to the first public developer preview releases, people ended up writing just about the same

boilerplate code over and over. In response, the team at Microsoft responsible for the templates

magnanimously decided to supply a standard implementation that also adds some keyboard handling

(for forward/back) and some convenience wrappers for layout matters. Hooray!

This piece is called the PageControlNavigator. Because it’s just a piece of template-supplied code

and not part of WinJS, it’s entirely under your control, so you can tweak, hack, or lobotomize it

however you want.24 In any case, because it’s likely that you’ll often use the PageControlNavigator in

your own apps, let’s look at how it all works in the context of the Navigation App template.

The Navigation App Template, PageControl Structure, and

PageControlNavigator
Taking one step beyond the Blank App template, the Navigation App template demonstrates the basic

use of page controls. (The more complex templates build navigation out further.) If you create a new

project with this template in Visual Studio or Blend, here’s what you’ll get:

 default.html Contains a single container div with a PageControlNavigator control

22 If you are at all familiar with user controls in XAML, this is the same idea.

23 The beforenavigate event can be used to cancel the navigation, if necessary. Either call args.preventDefault (args

being the event object), return true, or call args.setPromise where the promise returns true.

24 The Quickstart: using single-page navigation topic also shows a clever way to hijack HTML hyperlinks and hook them

into WinJS.Navigation.navigate. This can be a useful tool, especially if you’re importing code from a web app.

112

http://msdn.microsoft.com/en-us/library/windows/apps/br229778.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452768.aspx

pointing to “pages/home/home.html”.

 js/default.js Contains basic activation and state checkpoint code for the app.

 css/default.css Contains global styles.

 pages/home Contains a page control for the “home page” contents, composed of

home.html, home.js, and home.css. Every page control typically has such markup,

script, and style files.

 js/navigator.js Contains the implementation of the PageControlNavigator class.

To build upon this structure, add additional pages by using a page control template. I recommend

first creating a new folder for the page under pages. Then right-click that folder, select Add -> New

Item, and select Page Control. This will create suitably named .html, .js. and .css files in that folder.

Now let’s look at the body of default.html (omitting the standard header and a commented-out

AppBar control):

<body>

 <div id="contenthost" data-win-control="Application.PageControlNavigator"

 data-win-options="{home: '/pages/home/home.html'}"></div>

</body>

All we have here is a single container div named contenthost (it can be whatever you want), in

which we declare the Application.PageControlNavigator control. With this we specify a single

option to identify the first page control it should load (/pages/home/home.html). The

PageControlNavigator will be instantiated within our activated handler’s call to

WinJS.UI.processAll.

Within home.html we have the basic markup for a page control. This is what the Navigation App

template provides as a home page by default, and it’s pretty much what you get whenever you add a

new PageControl from the item template:

<!DOCTYPE html>

<html>

<head>

 <!--... typical HTML header and WinJS references omitted -->

 <link href="/css/default.css" rel="stylesheet">

 <link href="/pages/home/home.css" rel="stylesheet">

 <script src="/pages/home/home.js"></script>

</head>

<body>

 <!-- The content that will be loaded and displayed. -->

 <div class="fragment homepage">

 <header aria-label="Header content" role="banner">

 <button class="win-backbutton" aria-label="Back" disabled></button>

 <h1 class="titlearea win-type-ellipsis">

 Welcome to NavApp!

 </h1>

 </header>

113

 <section aria-label="Main content" role="main">

 <p>Content goes here.</p>

 </section>

 </div>

</body>

</html>

The div with fragment and homepage CSS classes, along with the header, creates a page with a

standard silhouette and a back button, which the PageControlNavigator automatically wires up for

keyboard, mouse, and touch events. (Isn’t that considerate of it!) All you need to do is customize the

text within the h1 element and the contents within section, or just replace the whole smash with the

markup you want. (By the way, even though the WinJS files are referenced in each page control, they

aren’t actually reloaded; they exist here to help you edit a page control in Blend by itself.)

The definition of the actual page control is in home.js; by default, the templates just provide the

bare minimum:

(function () {

 "use strict";

 WinJS.UI.Pages.define("/pages/home/home.html", {

 // This function is called whenever a user navigates to this page. It

 // populates the page elements with the app's data.

 ready: function (element, options) {

 // TODO: Initialize the page here.

 }

 });

})();

The most important part is WinJS.UI.Pages.define, which associates a relative URI (the page

control identifier), with an object containing the page control’s methods. Note that the nature of

define allows you to define different members of the page in multiple places; multiple calls to

WinJS.UI.Pages.define with the same URI will simply add members to an existing definition

(replacing those that already exist).

For a page created with the Page Control item template, you get a couple more methods in the

structure (some comments omitted):

(function () {

 "use strict";

 WinJS.UI.Pages.define("/page2.html", {

 ready: function (element, options) {

 },

 updateLayout: function (element, viewState, lastViewState) {

 // TODO: Respond to changes in viewState.

 },

 unload: function () {

 // TODO: Respond to navigations away from this page.

 }

114

 });

})();

It’s good to note that once you’ve defined a page control in this way, you can instantiate it from

JavaScript with new by first obtaining its constructor function from WinJS.UI.Pages.get(<page_uri>)

and then calling that constructor with the parent element and an object containing its options.

Although a basic structure for the ready method is provided by the templates, WinJS.UI.Pages and

the PageControlNavigator will make use of the following if they are available:

PageControl Method When Called

init Before elements from the page control have been copied into the DOM.

processed After WinJS.UI.processAll is compete (that is, controls in the page have been instantiated,

which is done automatically), but before page content itself has been added to the DOM.

ready After the page have been added to the DOM.

error If an error occurs in loading or rendering the page.

unload Navigation has left the page.

updateLayout In response to the window.onresize event, which signals changes between landscape, fill,

snap, and portrait view states.

Note that WinJS.UI.Pages calls the first four methods; unload and updateLayout, on the other

hand, are used only by the PageControlNavigator. Of all of these, the ready method is the most

common one to implement. It’s where you’ll do further initialization of control (e.g., populate lists),

wire up other page-specific event handlers, and so on. The updateLayout method is important when

you need to adapt your page layout to new conditions, such as changing the layout of a ListView

control (as we’ll see in Chapter 5, “Collections and Collection Controls”).

As for the PageControlNavigator itself, the code in navigator.js shows how it’s defined and how it

wires up a few events in its constructor:

(function () {

 "use strict";

 // [some bits omitted]

 var nav = WinJS.Navigation;

 WinJS.Namespace.define("Application", {

 PageControlNavigator: WinJS.Class.define(

 // Define the constructor function for the PageControlNavigator.

 function PageControlNavigator (element, options) {

 this.element = element || document.createElement("div");

 this.element.appendChild(this._createPageElement());

 this.home = options.home;

 nav.onnavigated = this._navigated.bind(this);

 window.onresize = this._resized.bind(this);

 document.body.onkeyup = this._keyupHandler.bind(this);

 document.body.onkeypress = this._keypressHandler.bind(this);

 document.body.onmspointerup = this._mspointerupHandler.bind(this);

 }, {

 //...

115

First we see the definition of the Application namespace as a container for the

PageControlNavigator class. Its constructor receives the element that contains it (the contenthost div

in default.html) and the options declared with data-win-options in that element. This control creates

another div for itself, appends that to its parent, adds a listener for the

WinJS.Navigation.onnavigated event, and sets up its other listeners. Then it waits for someone to call

WinJS.Navigation.navigate, which happens in the activated handler of default.js, to navigate to

either the home page or the last page viewed if previous session state was reloaded. When that

happens, the PageControlNavigator’s _navigated handler is invoked, which in turn calls

WinJS.UI.Pages.render to do the loading, the contents of which are then appended as child

elements:

_navigated: function (args) {

 var that = this;

 var newElement = that._createPageElement();

 var parentedComplete;

 var parented = new WinJS.Promise(function (c) { parentedComplete = c; });

 args.detail.setPromise(

 WinJS.Promise.timeout().then(function () {

 if (that.pageElement.winControl && that.pageElement.winControl.unload) {

 that.pageElement.winControl.unload();

 }

 return WinJS.UI.Pages.render(args.detail.location, newElement,

 args.detail.state, parented);

 }).then(function parentElement(control) {

 that.element.appendChild(newElement);

 that.element.removeChild(that.pageElement);

 that.navigated();

 parentedComplete();

 })

);

},

One final important point here is that in the page control’s JavaScript code, document will refer to

that page control’s contents, not to the content host in default.html.

And that, my friends, is how it works! As a concrete example of doing this in a real app, the code in

the HereMyAm3d sample has been converted to use this model for its single home page. To make this

conversion. I started with a new project using the Navigation App template to get the page navigation

structures set up. Then I copied or imported the relevant code and resources from HereMyAm3c,

primarily into the pages/home/home.html, home.js, and home.css. And remember how I said that you

could open a page control directly in Blend (which is why pages have WinJS references)? As an

exercise, open this project in Blend. You’ll first see that everything shows up in default.html, but you

can also open home.html and edit just that page.

You should note that WinJS calls WinJS.UI.processAll in the process of loading a page control, so

we don’t need to concern ourselves with that detail. On the other hand, reloading state when

previousExecutionState==terminated needs some attention. Because this is picked up in the

116

WinJS.Application.onactivated event before any page controls and the PageControlNavigator is

even instantiated, we need to remember that condition so that the home page’s ready method can

later initialize itself accordingly from app.sessionState values. For this we simply write another flag

into app.sessionState called initFromState. We always set this flag on startup, so any value that

might be persisted between sessions is irrelevant.

Sidebar: WinJS.Namespace.define and WinJS.Class.define

WinJS.Namespace.define provides a shortcut for the JavaScript namespace pattern. This helps

to minimize pollution of the global namespace as each app-defined namespace is just a single

object in the global namespace but can provide access to any number of other objects,

functions, and so on. This is used extensively in WinJS and is recommended for apps as well,

where you use a module—that is, (function() { ... })()—to define things and then you use a

namespace to export selective bits that are referenced through the namespace. In short, use a

namespace anytime you’re tempted to add any global objects or functions!

The syntax: var ns = WinJS.Namespace.define(<name>, <members>) where <name> is a string

(dots are OK) and <members> is any object contained in { }’s. Also, WinJS.Namespace.-

defineWithParent(<parent>, <name>, <members>) defines one within the <parent>

namespace.

If you call WinJS.Namespace.define for the same <name> multiple times, the <members> are

combined. Where collisions are concerned, the most recently added members win. For example:

WinJS.Namespace.define("MyNamespace", { x: 10, y: 10 });

WinJS.Namespace.define("MyNamespace", { x: 20, z: 10 });

//MyNamespace == { x: 20, y: 10, z: 10}

WinJS.Class.define is, for its part, a shortcut for the object pattern, defining a constructor

so that objects can be instantiated with new.

Syntax: var className = WinJS.Class.define(<constructor>, <instanceMembers>,

<staticMembers>) where <constructor> is a function, <instanceMembers> is an object with the

class’s properties and methods, and <staticMembers> is an object with properties and methods

that can be directly accessed via <className>.<member> (without using new).

Variants: WinJS.Class.derive(<baseClass>, ...) creates a subclass (... is the same arg list

as with define) using prototypal inheritance, and WinJS.Class.mix(<constructor>,

[<classes>]) defines a class that combines the instance (and static) members of one or more

other <classes> and initializes the object with <constructor>.

Finally, note that because class definitions just generate an object, WinJS.Class.define is

typically used inside a module with the resulting object exported to the rest of the app through a

namespace. Then you can use new <namespace>.<class> anywhere in the app.

117

Sidebar: Helping Out IntelliSense

In WinRT apps you might encounter certain markup structures within code commands, often

starting with a triple slash, ///. These are used by Visual Studio and Blend to provide rich

IntelliSense within the code editors. You’ll see, for example, /// <reference path…/> commands,

which create a relationship between your current script file and other scripts, which helps to

resolve externally defined functions and variables. This is explained on the JavaScript IntelliSense

page in the documentation. For your own code, especially with namespaces and classes that you

will use from other parts of your app, there are comment structures you can use to describe your

interfaces to IntelliSense. For details, see Extending JavaScript IntelliSense. If you look around the

WinJS JavaScript files themselves, you’ll see many examples.

The Navigation Process and Navigation Styles
Having seen how page controls, WinJS.UI.Pages, WinJS.Navigation, and the PageControlNavigator

all relate, it’s straightforward to see how to navigate between multiple pages within the context of a

single HTML page (e.g., default.html). With the PageControlNavigator instantiated and a page control

defined via WinJS.UI.Pages, simply call WinJS.Navigation.navigate with the relative URI of that

page control (its identifier). This loads that page and adds it to the DOM inside the element to which

the PageControlNavigator is attached. This makes that page visible, thereby “navigating” to it so far

as the user is concerned. You can also use the other methods of WinJS.Navigation to move forward

and back in the nav stack, with its canGoBack and canGoForward properties allowing you to

enable/disable navigation controls. Just remember that all the while, you’ll still be in the overall context

of your host page where you created the PageControlNavigator control.

As an example, create a new project using the Grid App template and look at these particular areas:

 pages/groupedItems/groupedItems is the home or “hub” page. It contains a ListView control

(see Chapter 5) with a bunch of default items.

 Tapping a group header in the list navigates to section page (pages/groupDetail). This is done

in groupedItems.html line 21, where the click event calls WinJS.Navigation.-

navigate("/pages/groupDetail/groupDetail.html") with an options argument identifying

the specific group to display. That argument comes into the ready function of groupDetail.js.

 Tapping an item on the hub page goes to detail page (pages/itemDetail). The itemInvoked

handler for the items—see groupedItems.js lines 27–37—calls WinJS.Navigation.-

navigate("/pages/itemDetail/itemDetail.html") with an options argument identifying the

specific item to display. As with groups, that argument comes into the ready function of

itemDetail.js.

 Tapping an item in the section page also goes to the details page through the same

mechanism—see groupDetail.js lines 25–28.

 The back buttons on all pages are wired into WinJS.Navigation.back by virtue of code in the

118

http://msdn.microsoft.com/en-us/library/bb385682.aspx
http://msdn.microsoft.com/en-us/library/hh874692.aspx

PageControlNavigator.

For what it’s worth, the Split App template works similarly, where each list item on the items page

(pages/items) is wired to navigate to pages/split when invoked.

In any case, the Grid App template also serves as an example of what we call the Hub-Section-Detail

navigation style. Here the app’s home page is the hub where the user can explore the full extent of the

app. Tapping a group header navigates to a section, the second level of organization where only items

from that group are displayed. Tapping an item (in the hub or in the section) navigates to a details

page for that item. You can, of course, implement this navigation style however you like; the Grid App

template uses page controls, WinJS.Navigation, and the PageControlNavigator. (Semantic zoom, as

we’ll see in Chapter 5, is also supported as a navigation tool to switch between hubs and sections.)

An alternate navigation choice is the Flat style, which simply has one level of hierarchy. Here,

navigation happens to any given page at any time through a navigation bar (swiped in from the top

edge). When using page controls and PageControlNavigator, navigation controls can just invoke

WinJS.Naviation.navigate for this purpose. Note that in this style, there typically is no back button.

These styles, along with many other UI aspects of navigation, can be found on Navigation design for

WinRT apps. This is an essential topic for app designers.

Sidebar: Initial Login and In-App Licensing Agreements (EULA) Pages

Some apps might require either a login or acceptance of a license agreement to do anything,

and thus it’s appropriate that such pages are the first that appear in an app. In these cases, if the

user does not accept a license or doesn’t provide a login, the app should display a message

describing the necessity of doing so, but it should always leave it to the user to close the app if

desired. Do not close the app automatically.

Typically, such pages appear only the first time the app is run. If the user provides a valid

login, those credentials can be saved for later use via the Windows.Security.Credentials API. If

the user accepts a EULA, that fact should be saved in appdata and reloaded anytime the app

needs to check. These settings (login and acceptance of a license) should then always be

accessible through the app’s Settings charm. Legal notices, by the way, as well as license

agreements, should always be accessible through Settings as well. (Note: UX guidance on this

should be forthcoming but was not available at the time of writing.)

In both cases, you would typically point to such pages in default.html as the home page. In

the init or processed methods of the page control, then, which are fired before the page is

added to the DOM, check to see if it’s not actually necessary to show the page. If that’s the case,

just call WinJS.Navigation.navigate to switch over to what will then be the first visible page.

119

http://msdn.microsoft.com/en-us/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761500.aspx

Optimizing Page Switching: Show-and-Hide
Even with page controls, there is still lots going on when navigating from page to page: one set of

elements is removed from the DOM, and another is added in. Depending on the pages involved, this

can be an expensive operation. For example, if you have a page that displays a list of hundreds or

thousands of items, where tapping any item goes to a details page (as with the Grid App template),

hitting the back button from a detail page will require reconstruction of the list.

Showing progress indicators can help alleviate the user’s anxiety, and the recommendation is to

show such indicators after two seconds and provide a means to cancel the operation after ten seconds.

Even so, users are notoriously impatient and will likely want to quickly switch between the list and

individual items. In this case, page controls might not be the best design.

You could use a split (master-detail) view, of course, but that means splitting the screen real estate.

An alternative, then, is to actually keep the list page fully loaded the whole time. Instead of navigating

to the item details page in the way we’ve seen, simply render that details page (see

WinJS.UI.Pages.render) into another div that occupies the whole screen and overlays the list, and

then make that div visible. When you dismiss the details page, just hide the div and set innerHTML to

"". This way you get the same effect as navigating between pages but the whole process is much

quicker. You can also apply WinJS animations like enterContent and exitContent to make the transition

more fluid.

The PageControlNavigator is provided by the templates as part of your app, and you can modify it

however you like to provide this kind of capability in a more structured manner.

Completing the Promises Story

Whew! We’ve taken a long ride in this chapter through many, many fine details of how apps are built

and how they run (or don’t run!). One consistent theme you may have noticed is that of

promises—they’ve come up in just about every section! Indeed, async abounds within both WinJS and

WinRT, and thus so do promises.

I wanted to close this chapter, then, by flushing out the story of promises, for they provide richer

functionality than we’ve utilized so far. (If you want the fuller async story, read Keeping apps fast and

fluid with asynchrony in the Windows Runtime on the Windows 8 developer blog.)

In review, let’s step back for a moment to revisit what a promise really is. Simply said, it’s an object

that returns a value, however complex, sometime in the future. The way you get that value is by calling

the promise’s then or done method, whose first parameter is a completed function that will receive the

promised value when it is ready—and that function might be called immediately if the result is already

available! Furthermore, you can call then/done multiple times for the same promise, and you’ll just get

the same results in each place. This won’t cause the system to get confused or anything.

If there’s an error along the way, the second parameter to then/done is an error function that will be

120

http://msdn.microsoft.com/en-us/library/windows/apps/Hh701582.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701585.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/20/keeping-apps-fast-and-fluid-with-asynchrony-in-the-windows-runtime.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/20/keeping-apps-fast-and-fluid-with-asynchrony-in-the-windows-runtime.aspx

called instead. (Otherwise exceptions are swallowed by then or thrown to the event loop by done.)

A third parameter to then/done is a progress function, which is called periodically by those async

operations that support it.25 We’ve already seen, for instance, how WinJS.xhr operations will

periodically call the progress function for “ready state” changes and as the response gets downloaded.

Now there’s no requirement that a promise has to wrap an async operation or async anything. You

can, in fact, wrap any value in a promise by using the static method WinJS.Promise.wrap. Such a

wrapper on an already existing value (the future is now!) will just turn right around and call the

completed function with that value when you call the promise’s then or done methods. This allows you

to use any value, really, where a promise is expected, or return things like errors from functions that

otherwise return promises for async operations. (WinJS.Promise.wraperror exists for this specific

purpose.)

WinJS.Promise also provides a host of useful static methods (called directly through

WinJS.Promise, rather than through a promise object):

 is determines whether an arbitrary value is a promise, It makes sure it’s an object with a

function named “then”; it does not test for “done”.

 as works like wrap except that if you give it a promise, it just returns that promise. If you

give a promise to wrap, it wraps it in another promise.

 join aggregates promises into a single one that’s fulfilled when all the values given to

it, including other promises, are fulfilled. This essentially groups promises with an AND

operation (using then, so you’ll want to call the join’s done method to handle errors

appropriately).

 any is similar to join but groups with an OR (again using then).

 cancel stops an async operation. If an error function is provided, it’s called with a value

of Error("canceled").

 theneach applies completed, error, and progress functions to a group of promises

(using then), returning the results as another group of values inside a promise.

 timeout has a dual nature. If you just give it a timeout value, it returns a promise

wrapped around a call to setTimeout. If you also provide a promise as the second

parameter, it will cancel that promise if it’s not fulfilled within the timeout period. This

latter case is essentially a wrapper for the common pattern of adding a timeout to some

other async operation that doesn’t have one already.

 addEventListener/removeEventListener (and dispatchEvent) manage handlers for

25 If you want to impress your friends while reading the documentation, know that if an async function shows it returns a

value of type IAsync[Action | Operation]WithProgress, then it will utilize a progress function given to a promise. If it

only lists IAsync[Action | Operation], progress is not supported.

121

http://msdn.microsoft.com/en-us/library/windows/apps/br211867.aspx

the error event that promises will fire on exceptions (but not for cancellation).

Listening for this event does not affect use of error functions. It’s an addition, not a

replacement.26

In addition to using functions like as and wrap, you can also create a promise from scratch by using

new WinJS.Promise(<init> [, <oncancel>) where <init> is a function that accepts completed, error,

and progress callbacks and oncancel is an optional function that’s called in response to

WinJS.Promise.cancel.

If WinJS.Promise.as doesn’t suffice, creating a promise like this is useful to wrap other operations

(not just values) within the promise structure so that it can be chained or joined with other promises.

For example, if you have a library that talks to a web service through raw async XmlHttpRequest, you

can wrap each API of that library with promises. You might also use a new promise to combine

multiple async operations (or other promises!) from different sources into a single promise, where join

or any don’t give you the control you need. Another example is encapsulating specific completed,

error, and progress functions within a promise, such as to implement a multiple retry mechanism on

top of singular XHR operations, to hook into a generic progress updater UI, or to add under-the-covers

logging or analytics with service calls so that the rest of your code never needs to know about them.

What We’ve Just Learned

 How the local and web contexts affect the structure of an app, for pages, page navigation, and

iframe elements.

 How to use application content URI rules to extend resource access to web content in an iframe.

 Using ms-appdata URI scheme to reference media content from local, roaming, and temp appdata

folders.

 How to execute a series of async operations with chained promises.

 How exceptions are handled within chained promises and the differences between then and done.

 Methods for getting debug output and error reports for an app, within the debugger and the

Windows Event Viewer.

 How apps are activated (brought into memory) and the events that occur along the way.

 The structure of app activation code, including activation kinds, previous execution states, and the

WinJS.UI.Application object.

 Using extended splash screens when an app needs more time to load.

 The important events that occur during an app’s lifetime, such as focus events, visibility changes,

view state changes, and suspend/resume/terminate.

26 Async operations from WinRT that get wrapped in promises do not fire this error event, which is why you typically use an

error handler instead.

122

 The basics of saving and restoring state to restart after being terminated, and the WinJS utilities for

implementing this.

 Using data from services through WinJS.xhr and how this relates to the resuming event.

 How to achieve page-to-page navigation within a single page context by using page controls,

WinJS.Navigation, and the PageControlNavigator from the Visual Studio/Blend templates, such

as the Navigation App template.

 All the details of promises that are common used with (but not limited to) async operations.

123

Chapter 4

Controls, Control Styling, and Data

Binding

Controls are one of those things you just can’t seem to get away from, especially within

technology-addicted cultures like those that surround many of us. Even low-tech devices like bicycles

and various gardening tools have controls. But this isn’t a problem—it’s actually a necessity. Controls

are the means through which human intent is translated into the realm of mechanics and electronics,

and they are entirely made to invite interaction. As I write this, in fact, I’m sitting on an airplane and

noticing all the controls that are in my view. The young boy in the row ahead of me seems to be doing

the same, and that big “call attendant” button above him is just begging to be pressed!

Controls are certainly essential to Windows 8 apps, and they will invite consumers to poke, prod,

touch, click, and swipe them. (They will also invite the oft-soiled hands of many small toddlers as well;

has anyone made a dishwasher-safe tablet PC yet?) Windows 8, of course, provides a rich set of

controls for apps written in HTML, CSS, and JavaScript. What’s most notable in this context is that from

the earliest stages of design, Microsoft wanted to avoid forcing HTML/JavaScript developers to use

controls that were incongruous with what those developers already know—namely, the use of HTML

control elements like <button> that can be styled with CSS and wired up in JavaScript by using

functions like addEventListener and on<event> properties.

You can, of course, use those intrinsic HTML controls in a Windows 8 app because those apps run

on top of the same HTML/CSS rendering engine as Internet Explorer. No problem. There are even

special classes, pseudo-classes, and pseudo-elements that give you fine-grained styling capabilities, as

we’ll see. But the real question was how to implement Windows 8-specific controls like the toggle

switch and list view that would allow you to work with them in the same way—that is, declare them in

markup, style them with CSS, and wire them up in JavaScript with addEventListener and on<event>

properties.

The result of all this is that for you, the HTML/JavaScript developer, you’ll be looking to WinJS for

these controls rather than WinRT. Let me put it another way: if you’ve noticed the large collection of

APIs in the Windows.UI.Xaml namespace (which constitutes about 40% of WinRT), guess what? You get

to completely ignore all of it! Instead, you’ll use the WinJS controls that support declarative markup,

styling with CSS, and so on, which means that Windows controls (and custom controls that follow the

same model) ultimately show up in the DOM along with everything else, making them accessible in all

the ways you already know and understand.

The story of controls in Windows 8 is actually larger than a single chapter. Here we’ll be looking

primarily at those controls that represent or work with simple data (single values) and that participate

124

in page layout as elements in the DOM. Participating in the DOM, in fact, is exactly why you can style

and manipulate all the controls (HTML and WinJS alike) through standard mechanisms, and a big part

of this chapter is to just visually show the styling options you have available. In the latter part of this

chapter we’ll also explore the related subject of data binding: creating relationships between properties

of data objects and properties of controls (including styles) so that the controls reflect what’s

happening in the data.

The story will then continue in Chapter 5, “Collections and Collection Controls,” where we’ll look at

collection controls—those that work with potentially large data sets—and the additional data-binding

features that go with them. We’ll also give special attention to media elements (image, audio, and

video) in Chapter 10, aptly titled “Media,” as they have a variety of unique considerations. Similarly,

those elements that are primary for defining layout (like grid and flexbox) are the subject of Chapter 6,

“Layout,” and we also have a number of UI elements that don’t participate in layout at all, like app bars

and flyouts, as we’ll see in Chapter 7, “Commanding UI.”

In short, having covered much of the wiring, framing, and plumbing of an app in Chapter 3, “App

Anatomy and Page Navigation,” we’re ready to start enjoying the finish work like light switches,

doorknobs, and faucets—the things that make an app really come to life and engage with human

beings.

Sidebar: Essential References for Controls

Before we go on, you’ll want to know about two essential topics on the Windows Developer

Center that you’ll likely refer to time and time again. First is the comprehensive Controls list that

identifies all the controls that are available to you, as we’ll summarize later in this chapter. The

second are comprehensive UX Guidelines for Windows 8 apps, which describes the best use cases

for most controls and scenarios in which not to use them. This is a very helpful resource for both

you and your designers.

The Control Model for HTML, CSS, and JavaScript

Again, when Microsoft designed the developer experience for Windows 8, we strove for a high degree

of consistency between intrinsic HTML control elements, WinJS controls, and custom controls. I like to

refer to all of these as “controls” because they all result in a similar user experience: some kind of

widget with which the user interacts with an app. In this sense, every such control has three parts:

 Declarative markup (producing elements in the DOM)

 Applicable CSS (styles as well as special pseudo-class and pseudo-element selectors)

 Methods, properties, and events accessible through JavaScript

Standard HTML controls, of course, already have dedicated markup to declare them, like <button>,

125

http://msdn.microsoft.com/en-us/library/windows/apps/hh465453.aspx
http://msdn.microsoft.com/en-US/library/windows/apps/hh465424

<input>, and <progress>. WinJS and custom controls, lacking the benefit of existing standards, are

declared using some root element, typically a <div> or , with two custom data-* attributes:

data-win-control and data-win-options. The value of data-win-control specifies the fully qualified

name of a public constructor function that creates the actual control as child elements of the root. The

second, data-win-options, is a JSON string containing key-value pairs separated by commas: {

<key1>: <value1>, <key1>: <value2>, ... }.

Hint If you’ve just made changes to data-win-options and your app seems to terminate without

reason (and without an exception) when you next launch it, check for syntax errors in the options

string. Forgetting the closing }, for example, will cause this behavior.

The constructor function itself takes two parameters: the root (parent) element and an options

object. Conveniently, WinJS.Class.define produce functions that look exactly like this, making it very

handy for defining controls (as WinJS does itself). Of course, because data-* attributes are, according

to the HTML5 specifications, completely ignored by the HTML/CSS rendering engine, some additional

processing is necessary to turn an element with these attributes into an actual control in the DOM. And

this, as I’ve hinted at before, is exactly the life purpose of the WinJS.UI.process and

WinJS.UI.processAll methods. As we’ll see shortly, these methods parse the options attribute and

pass the resulting object and the root element to the constructor function identified in

data-win-control.

The result of this simple declarative markup plus WinJS.UI.process/processAll is that WinJS and

custom controls are just elements in the DOM like any others. They can be referenced by

DOM-traversal APIs and targeted for styling using the full extent of CSS selectors (as we’ll see in the

styling gallery later on). They can listen for external events like other elements and can surface events

of their own by implementing [add/remove]EventListener and on<event> properties. (WinJS again

provides standard implementations of addEventListener, removeEventListener, and dispatchEvent

for this purpose.)

Let’s now look at the controls we have available for Windows 8 apps, starting with the HTML

controls and then the WinJS controls. In both cases we’ll look at their basic appearance, how they’re

instantiated, and the options you can apply to them.

HTML Controls

HTML controls, I hope, don’t need much explaining. They are described in HTML5 references, such as

http://www.w3schools.com/html5/html5_reference.asp, and shown with default “light” styling in Figure

4-1 and Figure 4-2. (See the next section for more on WinJS stylesheets.) It’s worth mentioning that

most embedded objects are not supported, except for a specific ActiveX controls; see Migrating a web

app.

Creating or instantiating an HTML also works as you would expect. You either declare them in

126

http://www.w3schools.com/html5/html5_reference.asp
http://msdn.microsoft.com/en-us/library/windows/apps/hh465143.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465143.aspx

markup (using attributes to specify options, the rundown of which is given in the table following Figure

4-2), or you create them procedurally from JavaScript by calling new with the appropriate constructor,

configuring properties and listeners as desired, and adding the element to the DOM wherever its

needed. Nothing new here at all where Windows 8 apps are concerned.

For examples of creating and using these controls, refer to the Common HTML Controls sample in

the Windows SDK, from which the images in Figure 4-1 and Figure 4-2 were obtained.

Figure 4-1 Standard HTML5 controls with default “light” styles (the ui-light.css stylesheet of WinJS).

127

http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24

Figure 4-2 Standard HTML5 text input controls with default “light” styles (the ui-light.css stylesheet of WinJS).

Control Markup Common Option Attributes Element Content (inner

text/HTML)

Button <button type="button"> (note that without type, the

default is "submit")

Button text

Button <input type="button">

<input type="submit">

<input type="reset">

value (button text) n/a

Checkbox <input

type=“checkbox”>

value, checked n/a (use a label element

around the input control to

add clickable text)

Drop Down List <select> size=“1” (default), multiple,

selectedIndex

Multiple <option> elements

Email <input type="email"> value (initial text) n/a

128

File Upload <input type="file"> accept (mime types), mulitple n/a

Hyperlink <a> href, target Link text

ListBox <select> with size > 1 size (a number greater than 1),

multiple, selectedIndex

Multiple <option> elements

Multi-line Text <textarea> cols, rows, readonly Initial text content

Number <input type="number"> value (initial text) n/a

Password <input

type=“password">

value (initial text) n/a

Phone Number <input type=“tel"> value (initial text) n/a

Progress <progress> value (initial position), max (highest

position; min is 0); no value makes

it inderterminate

n/a

Radiobutton <input

type="radiobutton">

value, checked, defaultChecked Radiobutton label

Rich Text <div> contentEditable=“true” HTML content

Slider <input type="range"> min, max, value (initial position),

step (increment)

n/a

URI <input type="url"> value (initial text) n/a

Two areas that add something to HTML controls are the WinJS stylesheets and the additional

methods, properties, and events that Microsoft’s rendering engine adds to most HTML elements. These

are the subjects of the next two sections.

WinJS stylesheets: ui-light.css, ui-dark.css, and win-* styles
WinJS comes with two parallel stylesheets that provide many default styles and style classes for WinRT

apps: ui-light.css and ui-dark.css. You’ll always use one or the other, as they are mutually exclusive. The

first is intended for apps that are oriented around text, because dark text on a light background is

generally easier to read (so this theme is often used for news readers, books, magazines, etc., including

figures in published books like this!). The dark theme, on the other hand, is intended for media-centric

apps like picture and video viewers where you want the richness of the media to stand out.

Both stylesheets define a number of win-* style classes, which I like to think of as style packages

that effectively add styles and CSS-based behaviors (like the :hover pseudo-class) that turn standard

HTML controls into a Windows 8-specific variant. These are win-backbutton for buttons, win-ring,

win-medium, and win-large for circular progress controls, win-small for a rating control,

win-vertical for a vertical slider (range) control, and win-textarea for a content editable div. If you

want to see the details, search on their names in the Style Rules tab in Blend.

129

Extensions to HTML Elements
As you probably know already, there are many developing standards for HTML and CSS. Until these are

brought to completion, implementations of those standards in various browsers are typically made

available ahead of time with vendor-prefixed names. In addition, browser vendors sometimes add their

own extensions to the DOM API for various elements.

With WinRT apps, of course, you don’t need to worry about the variances between browsers, but

since these apps essentially run on top of the Internet Explorer engines, it helps to know about those

extensions that still apply. These are summarized in the table below, and you can find the full Elements

Reference in the documentation for all the details your heart desires (and too much to spell out here).

If you’ve been working with HTML5 and CSS3 in Internet Explorer already, you might be wondering

why the table doesn’t show the various animation (msAnimation*), transition (msTransition*), and

transform properties (msPerspective* and msTransformStyle), along with msBackfaceVisibility.

This is because these standards are now far enough along that they no longer need vendor prefixes

with Internet Explorer 10 or WinRT apps (though the ms* variants still work).

Methods Description

msMatchesSelector Determines if the control matches a selector.

ms[Set | Get | Release]PointerCapture Captures, retrieves, and releases pointer capture for an element.

Style properties (on element.style) Description

msGrid*, msRow* Gets or sets placement of element within a CSS grid.

Events (add “on” for event properties) Description

mscontentzoom Fires when a user zooms an element (Ctrl+ +/-, Ctrl +

mousewheel), pinch gestures.

msgesture[change | end | hold | tap |

pointercapture]

Gesture input events (see Chapter 9, “Input and Sensors”).

msinertiastart Gesture input events (see Chapter 9).

mslostpointercapture Element lost capture (set previously with msSetPointerCapture.

mspointer[cancel | down | hover | move | out

| over | up]

Pointer input events (see Chapter 9).

msmanipulationstatechanged State of a manipulated element has changed.

WinJS Controls

Windows 8 defines a number of controls that help apps fulfill WinRT app design guidelines. As noted

before, these are implemented in WinJS for WinRT apps written in HTML, CSS, and JavaScript, rather

than WinRT; this allows those controls to integrate naturally with other DOM elements. Each control is

130

http://msdn.microsoft.com/en-us/library/windows/apps/hh767345.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh767345.aspx

defined as part of the WinJS.UI namespace using WinJS.Class.define, where the constructor name

matches the control name. So the full constructor name for a control like the Rating is

WinJS.UI.Rating.

The simpler controls that we’ll cover here in this chapter are DatePicker, Rating, ToggleSwitch,

and Tooltip, the default styling for which are shown in Figure 4-3. The collection controls that we’ll

cover in Chapter 5 are FlipView, ListView, and SemanticZoom. App bars, flyouts, and others that don’t

participate in layout are again covered in later chapters. Apart from these, there is only one other,

HtmlControl, which is simply an older (and essentially deprecated) alias for WinJS.UI.Pages. That is,

the HtmlControl is the same thing as rendering a page control: it’s an arbitrary block of HTML, CSS,

and JavaScript that you can declaratively incorporate anywhere in a page. We’ve already discussed all

those details in Chapter 3, so there’s nothing more to add here.

Figure 4-3 Default (light) styles on the simple WinJS controls.

The WinJS.UI.Tooltip control, you should know, can utilize any HTML including other controls, so

it goes well beyond the plain text tooltip that HTML provides automatically for the title attribute.

We’ll see more examples later.

So again, a WinJS control is declared in markup by attaching data-win-control and

data-win-options attributes to some root element. That element is typically a div (block element) or

span (inline element), because these don’t bring much other baggage, but any element can be used.

These elements can, of course, have id and class attributes as needed. The available options for these

controls are summarized in the table below, which includes those events that can be wired up through

the data-win-options string, if desired. For full documentation on all these options, start with the

Controls list in the documentation and go to the control-specific topics linked from there.

131

http://msdn.microsoft.com/en-us/library/windows/apps/hh465453.aspx

Fully-qualified constructor name

in data-win-control

Options in data-win-options

WinJS.UI.DatePicker Properties: calendar, current, datePattern, disabled, maxYear,

minYear, monthPattern, yearPattern

Events: onchange

WinJS.UI.Rating Properties: averageRating, disabled, enableClear, maxRating,

tooltipStrings (an array of strings the size of maxRating), userRating

Events: oncancel, onchange, onpreviewchange

WinJS.UI.TimePicker Properties: clock, current, disabled, hourPattern, minuteIncrement,
periodPattern

Events: onchange

WinJS.UI.ToggleSwitch Properties: checked, disabled, labelOff, labelOn, title

Events: onchange

WinJS.UI.Tooltip Properties: contentElement, innerHTML, infotip, extraClass, placement

Events: onbeforeclose, onbeforeopen, onclosed, onopened

Methods: open, close

Again, the data-win-options string containing key-value pairs, one for each property or event,

separated by commas, in the form { <key1>: <value1>, <key1>: <value2>, ... }. For events, whose

names in the options string always start with on, the value is the name of the event handler you want

to assign.

In JavaScript code, you can also assign event handlers by using <element>.addEventListener

("<event>", …) where <element> is the element for which the control was declared and <event>

drops the “on” as usual. To access the properties and events directly, use <element>.winControl.-

<property>. The winControl object is created when the WinJS control is instantiated and attached to

the element, so that’s where these options are available.

WinJS Control Instantiation
As we’ve seen a number of times already, WinJS controls declared in markup with data-* attributes are

not instantiated until you call WinJS.UI.process(<element>) for a single control or

WinJS.UI.processAll for all such elements in the DOM. To understand this process, here’s what

WinJS.UI.process does for a single element:

13. Parse the data-win-options string into an options object.

14. Extract the constructor specified in data-win-control, and then call new on that function

passing the root element and the options object.

15. The constructor creates whatever child elements it needs within the root element.

16. The object returned from the constructor—the control object—is stored in the root element’s

winControl property.

Clearly, then, the bulk of the work really happens in the constructor. Once this has happened, other

JavaScript code (as in your activated method) can call methods, manipulate properties, and add

132

listeners for events on both the root element and the winControl object. The latter, clearly, must be

used for WinJS control-specific methods, properties, and events.

WinJS.UI.processAll, for its part, simply traverses the DOM looking for data-win-control

attributes and does WinJS.UI.process for each. How you use both of these is really your choice:

processAll goes through a whole page (or just a page control—whatever the document object refers

to), whereas process lets you control the exact sequence or instantiate controls for which you

dynamically insert markup. Note that in both cases the return value is a promise, so if you need to take

additional steps after processing is complete, call the promise’s done method with a suitable completed

function.

It’s also good to understand that process and processAll are really just helper functions. If you

need to, you can just directly call new on a control constructor with an element and options object. This

will create the control and attach it to the given element automatically. You can also pass null for the

element, in which case the WinJS control constructors create a new div element to contain the control

that is otherwise unattached to the DOM. This would allow you, for instance, to build up a control

offscreen and attach it to the DOM only when needed.

To see all this in action, we’ll look at some examples with both the Rating and Tooltip controls in a

moment. First, however, we need to discuss a matter referred to as strict processing.

Strict Processing and processAll Functions
WinJS has three DOM-traversing functions: WinJS.UI.processAll, WinJS.Binding.processAll (which

we’ll see later in this chapter), and WinJS.Resources.processAll (which we’ll see in Chapter 17, “Apps

for Everyone”). Each of these looks for specific data-win-* attributes and then takes additional actions

using those contents. Those actions, however, can involve calling a number of different types of

functions:

 Functions appearing in a “dot path” for control processing and binding sources

 Functions appearing in the left-hand side for binding targets, resource targets, or

control processing

 Control constructors and event handlers

 Binding initializers or functions used in a binding expression

 Any custom layout used for a ListView control

Such actions introduce a risk of injection attack if a processAll function is called on untrusted

HTML, such as arbitrary markup obtained from the web. To mitigate this risk, WinJS has a notion of

strict processing that is enforced within all HTML/JavaScript apps.. The effect of strict processing is that

any functions indicated in markup that processAll methods might encounter must be “marked for

processing” or else processing will fail. The mark itself is simply a supportedForProcessing property

on the function object that is set to true.

133

Functions returned from WinJS.Class.define, WinJS.Class.derive, WinJS.UI.Pages.define, and

WinJS.Binding.converter are automatically marked in this manner. For other functions, you can

either set a supportedForProcessing property to true directly or use marking functions like so:

WinJS.Utilities.markSupportedForProcessing(myfunction);

WinJS.UI.eventHandler(myHandler);

WinJS.Binding.initializer(myInitializer);

//Also OK

<namespace>.myfunction = WinJS.UI.eventHandler(function () {

});

Note also that appropriate functions coming directly from WinJS, such as all WinJS.UI.* control

constructors, as well as WinJS.Binding.* functions, are marked by default.

So, if you reference custom functions from your markup, be sure to mark them accordingly. But this

is only for references from markup: you don’t need to mark functions that you assign to on<event>

properties in code or pass to addEventListener.

Example: WinJS.UI.Rating Control
OK, now that we got the strict processing stuff covered, let’s see some concrete example of working

with a WinJS control.

For starters, here’s some markup for a WinJS.UI.Rating control, where the options specify two

initial property values and an event handler:

<div id="rating1" data-win-control="WinJS.UI.Rating"

 data-win-options="{averageRating: 3.4, userRating: 4, onchange: changeRating}">

</div>

To instantiate this control, we need to call either of the following functions:

WinJS.UI.process(document.getElementById("rating1"));

WinJS.UI.processAll();

Again, both of these functions return a promise, but it’s unnecessary to call done unless we need to

do additional post-instantiation processing or surface exceptions that might have occurred (and that

are otherwise swallowed). Also, note that the changeRating function specified in the markup must be

globally visible and marked for processing, or else the control will fail to instantiate.

Next, we can instantiate the control and set the options procedurally. So, in markup:

<div id="rating1" data-win-control="WinJS.UI.Rating"></div>

And in code:

var element = document.getElementById("rating1");

WinJS.UI.process(element);

element.winControl.averageRating = 3.4;

element.winControl.userRating = 4;

134

element.winControl.onchange = changeRating;

The last three lines above could also be written as follows using the WinJS.UI.setOptions method,

but this isn’t recommended because it’s harder to debug:

var options = { averageRating: 3.4, userRating: 4, onchange: changeRating };

WinJS.UI.setOptions(element.winControl, options);

We can also just instantiate the control directly. In this case the markup is nonspecific:

<div id="rating1"></div>

And we call new on the constructor ourselves:

var newControl = new WinJS.UI.Rating(document.getElementById("rating1"));

newControl.averageRating = 3.4;

newControl.userRating = 4;

newControl.onchange = changeRating;

Or, as mentioned before, we can skip the markup entirely, have the constructor create an element

for us (a div), and attach it to the DOM at our leisure:

var newControl = new WinJS.UI.Rating(null,

 { averageRating: 3.4, userRating: 4, onchange: changeRating });

newControl.element.id = "rating1";

document.body.appendChild(newControl.element);

Hint If you see strange errors on instantiation with these latter two cases, check whether you forgot

the new and are thus trying to invoke the constructor function directly.

Note also in these last two cases that the rating1 element will have a winControl property

that is the same as newControl as returned from the constructor.

To see this control in action, please refer to the HTML Rating control sample in the SDK.

Example: WinJS.UI.Tooltip Control
With most of the other simple controls—namely the DatePicker, TimePicker, and ToggleSwitch—you

can work with them in the same ways as we just saw with Ratings. All that changes are the specifics of

their properties and events; again, start with the Controls list page and navigate to any given control

for all the specific details. Also, for working samples refer to the HTML DatePicker and TimePicker

controls and the HTML ToggleSwitch control samples in the SDK.

The WinJS.UI.Tooltip control is a little different, however, so I’ll illustrate its specific usage. First, to

attach a tooltip to a specific element, you can either add a data-win-control attribute to that element

or place the element itself inside the control:

<!-- Directly attach the Tooltip to its target element -->

<targetElement data-win-control="WinJS.UI.Tooltip">

</targetElement>

135

http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750
http://msdn.microsoft.com/en-us/library/windows/apps/hh465453.aspx
http://code.msdn.microsoft.com/windowsapps/Date-and-time-picker-sample-0424c7c2
http://code.msdn.microsoft.com/windowsapps/Date-and-time-picker-sample-0424c7c2
http://code.msdn.microsoft.com/windowsapps/ToggleSwitch-control-sample-84c0aacb

<!-- Place the element inside the Tooltip -->

 <!-- The element that gets the tooltip goes here -->

<div data-win-control="WinJS.UI.Tooltip">

 <!-- The element that gets the tooltip goes here -->

</div>

Second, the contentElement property of the tooltip control can name another element altogether,

which will be displayed when the tooltip is invoked. For example, if we have this piece of hidden HTML

in our markup (and notice that it contains other controls):

<div style="display: none;">

 <!--Here is the content element. It's put inside a hidden container

 so that it's invisible to the user until the tooltip takes it out.-->

 <div id="myContentElement">

 <div id="myContentElement_rating">

 <div data-win-control="WinJS.UI.Rating" class="win-small movieRating"

 data-win-options="{userRating: 3}">

 </div>

 </div>

 <div id="myContentElement_description">

 <p>You could provide any DOM element as content, even with WinJS controls inside. The tooltip

control will re-parent the element to the tooltip container, and block interaction events on that element,

since that's not the suggested interaction model.</p>

 </div>

 <div id="myContentElement_picture">

 </div>

 </div>

</div>

we can reference it like so:

<div data-win-control="WinJS.UI.Tooltip"

 data-win-options="{infotip: true, contentElement: myContentElement}">

 My piece of data

</div>

When you hover over the text (with a mouse or hover-enabled touch hardware), this tooltip will

appear:

This example is taken directly from the HTML Tooltip control sample in the SDK, so you can go

there to see how all this works directly.

136

http://code.msdn.microsoft.com/windowsapps/Tooltip-control-sample-cb24c2ce

Working with Controls in Blend

Before we move onto the subject of control styling, it’s a good time to highlight a few additional

features of Blend for Visual Studio where controls are concerned. As I mentioned in Video 2-1, the

Assets tab in Blend gives you quick access to all the HTML elements and WinJS controls (among many

other elements) that you can just drag and drop into whatever page is showing in the artboard. (See

Figure 4-4.) This will create basic markup, such as a div with a data-win-control attribute for WinJS

controls; then you can go to the HTML Attributes pane (on the right) to set options in the markup. (See

Figure 4-5.)

Figure 4-4 HTML elements (left) and WinJS control (right) as shown in Blend’s Assets tab.

Figure 4-5 Blend’s HTML Attributes tab shows WinJS control options, and editing them will affect the

data-win-options attribute in markup.

Next, take a moment to load up the Common HTML Controls sample from the SDK into Blend. This

is a great opportunity to try out Blend’s Interactive Mode to navigate to a particular page and explore

137

http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24

the interaction between the artboard and the Live DOM. (See Figure 4-6.) Once you open the project,

go into interactive mode by selecting View -> Interactive Mode on the menu, pressing Ctrl+Shift+I, or

clicking the small leftmost button on the upper right corner of the artboard. Then select scenario 5

(Progress introduction) in the listbox, which will take you to the page shown in Figure 4-6. Then exit

interactive mode (same commands), and you’ll be able to click around on that page. A short

demonstration of using interactive mode in this way is given in Video 4-1 in this chapter’s companion

content.

Figure 4-6 Blend’s interaction between the artboard and the Live DOM.

With the Common HTML Controls sample, you’ll see that there’s just a single element in the Live

DOM for intrinsic controls, as there should be, since all the internal details are part and parcel of the

HTML/CSS rendering engine. On the other hand, load up the HTML Rating control sample instead and

expand the div that contains one such control. There you’ll see all the additional child elements that

make up this control (shown in Figure 4-7), and you can refer to the right-hand pane for HTML

attributes and CSS properties. You can see something similar (with even more detailed information), in

the DOM Explorer of Visual Studio when the app is running. (See Figure 4-8.)

138

http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750

Figure 4-7 Expanding a WinJS control in Blend’s Live DOM reveals the elements that are used to build it.

Figure 4-8 Expanding a WinJS control in Visual Studio’s DOM Explorer also shows complete details for a control.

Control Styling

Now we come to a topic where we’ll mostly get to look at lots of pretty pictures: the various ways in

which HTML and WinJS controls can be styled. As we’ve discussed, this happens through CSS all the

way, either in a stylesheet or by assigning style.* properties, meaning that apps have full control over

the appearance of controls. In fact, absolutely everything that’s different between HTML controls in a

WinRT app and the same controls on a web page, is due to styling and styling alone.

For both HTML and WinJS controls, CSS standards apply including pseudo-selectors like :hover,

:active, :checked, and so forth, along with -ms-* prefixed styles for emerging standards.

For HTML controls, there are also additional -ms-* styles—that aren’t part of CSS3—to isolate

specific parts of those controls. That is, because the constituent parts of such controls don’t exist

139

separately in the DOM, pseudo-selectors—like ::-ms-check to isolate a checkbox mark and

::-ms-fill-lower to isolate the left or bottom part of a slider—allow you to communicate styling to

the depths of the rendering engine. In contrast, all such parts of WinJS controls are addressable in the

DOM, so they are just styled with specific win-* classes defined in the WinJS stylesheets. That is, the

controls are simply rendered with those style classes. Default styles are defined in the WinJS stylesheets,

but apps can override any aspect of those to style the controls however you want.

In a few cases, as already pointed out, certain win-* classes define style packages for use with HTML

controls, such as win-backbutton, win-vertical (for a slider) and win-ring (for a progress control).

These are intended to style standard controls to look like special system controls.

There are also a few general purpose -ms-* styles (not selectors) that can be applied to many

controls (and elements in general), along with some general WinJS win-* style classes. These are

summarized in Table 4-4.

Style or Class Description

-ms-user-select: none | inherit | element | text
| auto

Enables or disables selection for an element. Setting to 'none' is

particularly useful to prevent selection in text elements.

-ms-zoom: <percentage> Optical zoom (magnification).

-ms-touch-action: auto | none (and more) Allows specific tailoring of a control’s touch experience,

enabling more advanced interaction models.

win-interactive Prevents default behaviors for controls contained inside

FlipView and ListView controls (see Chapter 5).

win-swipeable Sets -ms-touch-action styles so a control within a ListView

can be swiped (to select) in one direction without causing

panning in the other.

win-small, win-medium, win-large Size variations to some controls.

win-textarea Sets typical text editing styles.

Table 4-4 General -ms-* styles and win-* classes for WinRT apps.

For all of these and more, spend some time with these three reference topics: WinJS styles for

typography, WinJS CSS classes for HTML controls, and WinJS classes for WinJS controls. I also wanted

to provide you with a summary (Table 4-5) of all the other vendor-prefixed styles (or selectors) that are

supported within the CSS engine for WinRT apps. I made this list because the documentation here can

be hard to penetrate: you have to click through the individual pages under the Cascading Style Sheets

topic in the docs to see what little bits have been added to the CSS you already know.

Area Styles

Backgrounds and borders -ms-background-position-[x | y]

Box model -ms-overflow-[x | y]

Basic UI -ms-text-overflow (for ellipses rendering)

-ms-user-select (sets or retrieves where users are able to select text within an element.)

-ms-zoom (optical zoom)

Flexbox -ms-[inline-]flexbox (values for display); -ms-flex and -ms-flex-[align |
direction | order | pack | wrap]

140

http://msdn.microsoft.com/en-us/library/windows/apps/hh770582.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770582.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770562.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh440966.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh453285.aspx

Gradients -ms-[repeating-]linear-gradient, -ms-[repeating-]radial-gradient

Grid -ms-grid and -ms-grid-[column | column-align | columns | column-span |
grid-layer | row | row-align | rows | row-span]

High contrast -ms-high-contrast-adjust

Regions -ms-flow-[from | into] along with the MSRangeCollection method

Text -ms-block-progression, -ms-hyphens and –ms-hypenate-limit-[chars | lines |

zone], -ms-text-align-last, -ms-word-break, -ms-word-wrap, -ms-ime-mode,

-ms-layout-grid and –ms-layout-grid-[char | line | mode | type], and –
ms-text-[autospace | kashida-space | overflow | underline-position]

Other -ms-writing-mode

Table 4-5 Summary of -ms-* styles beyond CSS standards. Vendor-prefixed styles for animations, transforms, and

transitions are still supported, though no longer necessary, because these standards have recently been finalized.

Styling Gallery: HTML Controls
Now we get to enjoy a visual tour of styling capabilities for WinRT apps. Much can be done with

standard styles, and then there are all the things you can do with special styles and classes as shown in

the graphics in this section. The specifics of all these examples can be seen in the Common HTML

Controls sample in the SDK.

Also check out the very cool Applying app theme color (theme roller) sample. This beauty lets you

configure the primary and secondary colors for an app, shows how those colors affect different

controls, and produces about 200 lines of precise CSS that you can copy into your own stylesheet. This

very much helps you create a color theme for your app, which we very much encourage to establish an

app’s own personality within the overall Windows 8 design guidelines.

141

http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24
http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24
http://code.msdn.microsoft.com/windowsapps/Theme-roller-sample-64b679f2

142

Note Though not shown here, you can also use the -ms-scrollbar-* styles for scrollbars that

appear on pannable content in your app.

Styling Gallery: WinJS Controls
Similarly, here is a visual rundown of styling for WinJS controls, drawing again from the samples in the

SDK: HTML DatePicker and TimePicker controls, HTML Rating control, HTML ToggleSwitch control, and

HTML Tooltip control.

For the WinJS DatePicker and TimePicker, refer to styling for the HTML select element along with

the ::-ms-value and ::-ms-expand pseudo-elements. I will note that the sample isn’t totally

comprehensive, so the visuals below highlight the finer points:

143

http://code.msdn.microsoft.com/windowsapps/Date-and-time-picker-sample-0424c7c2
http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750
http://code.msdn.microsoft.com/windowsapps/ToggleSwitch-control-sample-84c0aacb
http://code.msdn.microsoft.com/windowsapps/Tooltip-control-sample-cb24c2ce

The Rating control has states that can be styled in addition to its stars and the overall control. win-*

classes identify these individually; combinations style all the variations as in this table:

Style Class Part

win-rating Styles the entire control.

win-star Styles the control's stars generally.

win-empty Styles the control's empty stars.

win-full Styles the control's full stars.

.win-star Classes State

win-average Control is displaying an average rating (user has not selected a rating and the

averageRating property is non-zero).

win-disabled Control is disabled.

win-tentative Control is displaying a tentative rating.

win-user Control is displaying user-chosen rating.

Variation Classes (selectors)

Average empty stars .win-star.win-average.win-empty

Average full stars .win-star.win-average.win-full

Disabled empty stars .win-star.win-disabled.win-empty

Disabled full stars .win-star.win-disabled.win-full

Tentative empty stars .win-star.win-tentative.win-empty

Tentative full stars .win-star.win-tentative.win-full

User empty stars .win-star.win-user.win-empty

User full stars .win-star.win-user.win-full

144

For the ToggleSwitch, win-* classes identify parts of the control; states are implicit. Note that the

win-switch part is just an HTML slider control (<input type="range">), so you can utilize all the

pseudo-elements for its parts.

And finally, for Tooltip, win-tooltip is a single class for the tooltip as a whole; the control can then

contain any other HTML to which CSS applies using normal selectors:

145

Some Tips and Tricks
 In the current implementation, tooltips on a slider (<input type="range">) are always

numerical values; there isn’t a means to display other forms of text, such as Low,

Medium, and High. For something like this, you could consider a WinJS.UI.Rating

control with three values, using the tooltipStrings property to customize the tooltips.

 The ::-ms-tooltip pseudo-selector for the slider affects only visibility (with display:

none); it cannot be used to style the tooltip generally. This is useful to hide the default

tooltips if you want to implement custom UI of your own.

 There are additional types of input controls (different values for the type attribute) that

I haven’t mentioned. This is because those types have no special behaviors and just

render as a text box. Those that have been specifically identified might also just render

as a text box, but they can affect, for example, what on-screen keyboard configuration

is displayed on a touch device and also provide specific input validation (e.g., the

number type only accepts digits).

 If you don’t find width and height properties working for a control, try using

style.width and style.height instead.

 You’ll notice that there are two kinds of button controls: <button> and <input

type="button">. They’re visually the same, but the former is a block tag and can

display HTML inside itself, whereas the latter is an inline tag that displays only text. A

button also defaults to <input type="submit">, which has its own semantics, so you

generally want to use <button type="button"> to be sure.

 If a WinJS.UI.Tooltip is getting clipped, you can override the max-width style in the

146

win-tooltip class, which is set to 30em in the WinJS stylesheets. Again, peeking at the

style in Blend’s Style Rules tab is a quick way to see the defaults.

 The HTML5 meter element is not supported for WinRT apps.

 There’s a default dotted outline for a control when it has the focus (tabbing to it with

the keyboard or calling the focus method in JavaScript). To turn off this default

rectangle for a control, use <selector>:focus { outline: none; } in CSS.

 WinRT apps can use the window.getComputedStyle method to obtain a currentStyle

object that contains the applied styles for an element, or for a pseudo-element. This is

very helpful, especially for debugging, because pseudo-elements like ::-ms-thumb for

an HTML slider control never appear in the DOM, so the styling is not accessible

through the element’s style property nor does it surface in tools like Blend. Here’s an

example of retrieving the background color style for a slider thumb:

var styles = window.getComputedStyle(document.getElementById("slider1"), "::-ms-thumb");

styles.getPropertyValue("background-color");

Custom Controls

As extensive as the HTML and WinJS controls are, there will always be something you wish the system

provided but doesn’t. “Is there a calendar control?” is a question I’ve often heard. “What about charting

controls?” These clearly aren’t included directly in Windows 8, and despite any wishing to the contrary,

it means you or another third-party will need to create a custom control.

Fortunately, everything we’ve learned so far, especially about WinJS controls, applies to custom

controls. In fact, WinJS controls are entirely implemented using the same model that you can use

directly, and since you can look at the WinJS source code anytime you like, you already have a bunch

of reference implementations available.

To go back to our earlier definition, a control is just declarative markup (creating elements in the

DOM) plus applicable CSS plus methods, properties, and events accessible from JavaScript. To create

such a control in the WinJS model, generally follow this pattern:

1. Define a namespace for your control(s) by using WinJS.Namespace.define to both provide a

naming scope and to keep excess identifiers out of the global namespace. (Do not add controls

to the WinJS namespace.) Remember that you can call WinJS.Namespace.define many times to

add new members, so typically an app will just have a single namespace for all its custom

controls.

2. Within that namespace, define the control constructor by using WinJS.Class.define (or

derive), assigning the return value to the name you want to use in data-win-control

attributes. That fully qualified name will be <namespace>.<constructor>.

147

http://msdn.microsoft.com/en-us/library/windows/apps/Hh702516.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh453398.aspx

3. Within the constructor (of the form <constructor>(element, options)):

a. You can recognize any set of options you want; these are arbitrary. Simply ignore any that

you don’t recognize.

b. If element is null or undefined, create a div to use in its place.

c. Assuming element is the root element containing the control, be sure to set

element.winControl=this and this.element=element to match the WinJS pattern.

4. Within WinJS.Class.define, the second argument is an object containing your public methods

and properties (those accessible through an instantiated control instance); the third argument is

an object with static methods and properties (those accessible through the class name without

needing to call new).

5. For your events, mix (WinJS.Class.mix) your class with the results from WinJS.-

Utilities.createEventProperties(<events>) where <events> is an array of your event

names (without on prefixes). This will create on<event> properties in your class for each name

in the list.

6. Also mix your class with WinJS.UI.DOMEventMixin to add standard implementations of

addEventListener, removeEventListener, dispatchEvent, and setOptions.27

7. In your implementation (markup and code), refer to classes that you define in a default

stylesheet but that can be overridden by consumers of the control. Consider using existing

win-* classes to align with general styling.

8. A typical best practice is to organize your custom controls in per-control folders that contain all

the html, js, and css files for that control. Remember also that calls to WinJS.Namespace.define

for the same namespace are additive, so you can populate a single namespace with controls

that are defined in separate files.

You might consider using WinJS.UI.Pages if what you need is mostly a reusable block of

HTML/CSS/JavaScript for which you don’t necessarily need a bunch of methods, properties, and events.

WinJS.UI.Pages is, in fact, implemented as a custom control. Along similar lines, if what you need is a

reusable block of HTML in which you want to do run-time data binding, check out

WinJS.Binding.Template (which we’ll see toward the end of this chapter), which exists for that

purpose. This isn’t a control as we’ve been describing here—it doesn’t support events, for

instance—but might be exactly what you need.

It’s also worth reminding you that everything in WinJS, like WinJS.Class.define and

WinJS.UI.DOMEventMixin are just helpers for common patterns. You’re not in any way required to use

these, because in the end, custom controls are just elements in the DOM like any others and you can

create and manage them however you like. The WinJS utilities just make most jobs cleaner and easier.

27 Note that there is also a WinJS.Utilities.eventMixin that is similar (without setOptions) that is useful for noncontrol

objects that won’t be in the DOM but still want to fire events. The implementations here don’t participate in DOM event

bubbling/tunneling.

148

Custom Control Examples
To see these recommendations in action, here are a couple of examples. First is what Chris Tavares, one

of the WinJS engineers who has been a tremendous help with this book, described as the “dumbest

control you can imagine.” Yet it certainly shows the most basic structures:

WinJS.Namespace.define("AppControls", {

 HelloControl: function (element, options) {

 element.winControl = this;

 this.element = element;

 if (options.message) {

 element.innerText = options.message;

 }

 }

});

With this, you can then use the following markup so that WinJS.UI.process/processAll will

instantiate an instance of the control (as an inline element because we’re using span as the root):

<span data-win-control="AppControls.HelloControl"

 data-win-options="{ message: 'Hello, World'}">

Note that the control definition code must be executed before WinJS.UI.process/processAll so

that the constructor function named in data-win-control actually exists at that point.

For a more complete control, you can take a look at the HTML SemanticZoom for custom controls

sample in the Windows SDK. My friend Kenichiro Tanaka of Microsoft Tokyo also created the calendar

control shown in Figure 4-9 and provided in the CalendarControl example for this chapter.

Following the guidelines given earlier, this control is defined using WinJS.Class.define within a

Controls namespace (calendar.js lines 4–10 shown here [with a comment line omitted]):

WinJS.Namespace.define("Controls", {

 Calendar : WinJS.Class.define(

 function (element, options) {

 this.element = element || document.createElement("div");

 this.element.className = "control-calendar";

 this.element.winControl = this;

The rest of the constructor (lines 12–63) builds up the child elements that define the control,

making sure that each piece has a particular class name that, when scoped with the control-calendar

class placed on the root element above, allows specific styling of the individual parts. The defaults for

this are in calendar.css; specific overrides that differentiate the two controls in Figure 4-9 are in

default.css.

149

http://code.msdn.microsoft.com/windowsapps/SemanticZoom-for-custom-4749edab
http://code.msdn.microsoft.com/windowsapps/SemanticZoom-for-custom-4749edab

Figure 4-9 Output of the Calendar Control demo sample.

Within the constructor you can also see that the control wires up its own event handlers for its child

elements, such as the previous/next buttons and each date cell. In the latter case, clicking a cell uses

dispatchEvent to raise a dateselected event from the overall control itself.

Lines 63–127 then define the members of the control. There are two internal methods, _setClass

and _update, followed by two public methods, nextMonth and prevMonth, followed by three public

properties, year, month, and date. Those properties can be set through the data-win-options string in

markup or directly through the control object as we’ll see in a moment.

At the end of calendar.js you’ll see the two calls to WinJS.Class.mix to add properties for the

events (there’s only one here), and the standard DOM event methods like addEventListener,

removeEventListener, and dispatchEvent, along with setOptions:

WinJS.Class.mix(Controls.Calendar, WinJS.Utilities.createEventProperties("dateselected"));

WinJS.Class.mix(Controls.Calendar, WinJS.UI.DOMEventMixin);

Very nice that adding all these details is so simple—thank you, WinJS!28

Between calendar.js and calendar.css we have the definition of the control. In default.html and

default.js we can then see how the control is used. In Figure 4-9, the control on the left is declared in

markup and instantiated through the call to WinJS.UI.processAll in default.js.

<div id="calendar1" class="control-calendar" aria-label="Calendar 1"

 data-win-control="Controls.Calendar"

 data-win-options="{ year: 2012, month: 5, ondateselected: CalendarDemo.dateselected}">

</div>

28 Technically speaking, WinJS.Class.mix accepts a variable number of arguments, so you can actually combine the two

calls above into a single one.

150

You can see how we use the fully qualified name of the constructor as well as the event handler

we’re assigning to ondataselected. But remember that functions referenced in markup like this have

to be marked for strict processing. The constructor is automatically marked through

WinJS.Class.define, but the event handler needs extra treatment: we place the function in a

namespace (to make it globally visible) and use WinJS.UI.eventHandler to do the marking:

WinJS.Namespace.define("CalendarDemo", {

 dateselected: WinJS.UI.eventHandler(function (e) {

 document.getElementById("message").innerText = JSON.stringify(e.detail) + " selected";

 })

});

Again, if you forget to mark the function in this way, the control won’t be instantiated at all.

(Remove the WinJS.UI.eventHandler wrapper to see this.)

To demonstrate creating a control outside of markup, the control on the right of Figure 4-9 is

created as follows, within the calendar2 div:

//Since we're creating this calendar in code, we're independent of WinJS.UI.processAll.

var element = document.getElementById("calendar2");

//Since we're providing an element, this will be automatically added to the DOM

var calendar2 = new Controls.Calendar(element);

//Since this handler is not part of markup processing, it doesn't need to be marked

calendar2.ondateselected = function (e) {

 document.getElementById("message").innerText = JSON.stringify(e.detail) + " selected";

}

There you have it!

Note For a control you really intend to share with others, you’ll want to include the necessary

comments that provide metadata for IntelliSense. See the “Sidebar: Helping Out IntelliSense” in

Chapter 3 for more details.

Custom Controls in Blend
Blend is an excellent design tool for working with controls directly on the artboard, so you might be

wondering how custom controls integrate into that story.

First, since custom controls are just elements in the DOM, Blend works with them like all other parts

of the DOM. Try loading the Calendar Control Demo into Blend to see for yourself.

Next, a control can determine if it’s running inside Blend’s design mode if the Windows.-

ApplicationModel.DesignMode.designModeEnabled property is true. One place where this is very

useful is when handling resource strings. We won’t cover resources in full until Chapter 17, but it’s

important to know here that resource lookup, through Windows.ApplicationModel.Resources.-

ResourceLoader in Blend’s design mode, doesn’t work the same as when the app is actually running

for real. To be blunt, it doesn’t work at all and throws exceptions! So you can use the design-mode flag

151

to just provide a suitable default instead of doing the lookup.

For example, one of the early partners I worked with had a method to retrieve a localized URI to

their back-end services, which was failing in design mode. Using the design mode flag, then, we just

had to change the code to look like this:

WinJS.Namespace.define("App.Localization", {

 getBaseUri: function () {

 if (Windows.ApplicationModel.DesignMode.designModeEnabled) {

 return "www.default-base-service.com";

 } else {

 var resources = new Windows.ApplicationModel.Resources.ResourceLoader();

 var baseUri = resources.getString("baseUrl");

 return baseUri;

 }

 }

});

Finally, it is possible to have custom controls show up in the Assets tab alongside the HTML

elements and the WinJS controls. For this you’ll first need an OpenAjax Metadata XML (OAM) file that

provides all the necessary information for the control, and you already have plenty of references to

draw from. Take a look on your machine under Program Files (x86)\Microsoft Visual Studio

11.0\Blend\Intrinsics in some of the subfolders and you’ll find plenty of *_oam.xml files. The ones for

WinJS controls are in an even more obscure location: Program Files (x86)\Microsoft SDKs\Windows\

v8.0\ExtensionSDKs\Microsoft.WinJS.1.0.RC\1.0\DesignTime\CommonConfiguration\Neutral\Microsoft.

WinJS.1.0.RC\js\metadata. In both places you’ll also find plenty of examples of the 12x12 and 16x16

icons you’ll want for your control.

If you look in the controls/calendar folder of the CalendarControl sample with this chapter, you’ll

find calendar_oam.xml and two icons alongside the .js and .css files. The OAM file (that must have a

filename ending in _oam.xml) tells Blend how to display the control in its Assets panel and what code it

should insert when you drag and drop a control into an HTML file. Here are the contents of that file:

<?xml version="1.0" encoding="utf-8"?>
<!-- Use underscores or periods in the id and name, not spaces. -->
<widget version="1.0"
 spec="1.0"
 id="http://www.kraigbrockschmidt.com/scehmas/ProgrammingWin8_JS/Controls/Calendar"
 name="ProgWin8_JS.Controls.Calendar"
 xmlns="http://openajax.org/metadata">

 <author name="Kenichiro Tanaka" />

 <!-- title provides the name that appears in Blend's Assets panel
 (otherwise it uses the widget.name). -->
 <title type="text/plain"><![CDATA[Calendar Control]]></title>

 <!-- description provides the tooltip fir Assets panel. -->

 <description type="text/plain"><![CDATA[A single month calendar]]></description>

 <!-- icons (12x12 and 16x16 provide the small icon next to the control

152

http://www.openajax.org/member/wiki/OpenAjax_Metadata_1.0_Specification_Descriptive

 in the Assets panel. -->
 <icons>
 <icon src="calendar.16x16.png" width="16" height="16" />
 <icon src="calendar.12x12.png" width="12" height="12" />
 </icons>

 <!-- This element describes what gets inserted into the .html file;
 comment out anything that's not needed -->

 <requires>
 <!-- The control's code -->
 <require type="javascript" src="calendar.js" />

 <!-- The control's stylesheet -->

 <require type="css" src="calendar.css" />

 <!-- Any inline script for the document head -->
 <require type="javascript"><![CDATA[WinJS.UI.processAll();]]></require>

 <!-- Inline CSS for the style block in the document head -->
 <!--<require type="css"><![CDATA[.control-calendar{}]]></require>-->
 </requires>

 <!-- What to insert in the body for the control; be sure this is valid HTML
 or Blend won't allow insertion -->
 <content>
 <![CDATA[
 <div class="control-calendar" data-win-control="Controls.Calendar"
 data-win-options="{ year: 2012, month: 6 }"></div>
]]>

 </content>
</widget>

When you add all five files into a project in Blend, you’ll see the control’s icon and title in the Assets

tab (and hovering over the control shows the tooltip):

If you drag and drop that control onto an HTML page, you’ll then see the different bits added in:

<!DOCTYPE html>
<html>
<head>

 <!-- ... -->
 <script src="calendar.js" type="text/javascript"></script>
 <link href="calendar.css" rel="stylesheet" type="text/css">

153

</head>
<body>
 <div class="control-calendar" data-win-control="Controls.Calendar"
 data-win-options="{month:6, year:2012}"></div>
</body>
</html>

Oh! What happened to the WinJS.UI.processAll() call? It just so happens that Blend singles out

this piece of code to check if it’s already being called somewhere in the loaded script. If it is (as is

typical with the project templates), Blend doesn’t repeat it. If it does include it, or if you specify other

code here, Blend will insert it in a <script> tag in the header.

Also, errors in your OAM file will convince Blend that it shouldn’t insert the control at all, so you’ll

need to fix those errors. When making changes, Blend won’t reload the metadata unless you reload the

project or rename the OAM file (preserving the _oam.xml part). I found the latter is much easier, as

Blend doesn’t care what the rest of the filename looks like. In this renaming process too, if you find that

the control disappeared from the Assets panel, it means you have an error in the OAM XML structure

itself, such as attribute values containing invalid characters. For this you’ll need to do some trial and

error, and of course you can refer to all the OAM files already on your machine for details.

You can also make your control available to all projects in Blend. To do this, go to Program Files

(x86)\Microsoft Visual Studio 11.0\Blend, create a folder called Addins if one doesn’t exist, create a

subfolder therein for your control (using a reasonably unique name), and copy all your control assets

there. When you restart Blend, you’ll see the control listed under Addins in the Assets tab:

This would be appropriate if you create custom controls for other developers to use; your desktop

installation program would simply place your assets in the Addins folder. As for using such a control,

when you drag and drop the control to an HTML file, its required assets (but not the icons nor the

OAM file) are copied to the project into the root folder. You can then move them around however you

like, patching up the file references, of course.

Data Binding

As I mentioned in the introduction to this chapter, the subject of data binding is closely related to

controls because it’s how you create relationships between properties of data objects and properties of

controls (including styles). This way, controls reflect what’s happening in the data, which is often exactly

154

what you want to accomplish in your user experience.

I want to start this discussion with a review of data binding in general, for you may be familiar with

the concept to some extent, as I was, but unclear on a number of the details. At times, in fact, especially

if you’re talking to someone who has been working with it for years, data binding seems to become

shrouded in some kind of impenetrable mystique. I don’t at all count myself among such initiates, so I’ll

try to express the concepts in prosaic terms.

The general idea of data binding is again to connect or “bind” properties of two different objects

together, typically a data object and a UI object, which we can generically refer to as a source and a

target. A key here is that data binding generally happens between properties, not objects.

The binding can also involve converting values from one type into another, such as converting a set

of separate source properties into a single string as suitable for the target. It’s also possible to have

multiple target objects bound to the same source object or one target bound to multiple source

objects. This flexibility is exactly why the subject can become somewhat nebulous, because there are so

many possibilities! Still, for most scenarios, we can keep the story simple.

A common data-binding scenario is shown in Figure 4-10, where we have specific properties of two

UI elements, a span and an img, bound to properties of a data object. There are three bindings here: (1)

the span.innerText property is bound to the source.name property; (2) the img.src property is

bound to the source.photoURL property; and (3) the span.style.color property is bound to the

output of a converter function that changes the source.userType property into a color.

Figure 4-10 A common data-binding scenario between a source data object and two target UI elements, involving

two direct bindings and one binding with a conversion function.

How these bindings actually behave at run time then depends on the particular direction of each

binding, which can be one of the following:

One-time: the value of the source property (possibly with conversion) is copied to the target

property at some point, after which there is no further relationship. This is what you automatically do

155

when passing variables to control constructors, for instance, or simply assigning target property values

using source properties. (What’s useful here is to have a declarative means to make such assignments

directly in element attributes.)

One-way: the target object listens for change events on bound source properties so that it can

update itself with new values. This is typically used to update a UI element in response to underlying

changes in the data. Changes within the target element (like a UI control), however, are not reflected

back to the data itself (but can be sent elsewhere as with form submission, which could in turn update

the data through another channel).

Two-way: essentially one-way binding in both directions, as the source object also listens to change

events from the target object. Changes made within a UI element like a text box are thus saved back in

the bound source property, just as changes to the data source property update the UI element.

Obviously, there must be some means to not get stuck in an infinite loop; typically, both objects avoid

firing another change event if the new value is the same as the existing one.

156

Data Binding in WinJS
Now that we’ve seen what data binding is all about, we can see how they can be implemented within a

Windows 8 app. If you like, you can create whatever scheme you want for data binding or use a

third-party JavaScript library for the job: it’s just about connecting properties of source objects with

properties of target objects.

Now, if you’re anything like a number of my paternal ancestors, who seemed to wholly despise

relying on anyone to do anything they could do themselves (like drilling wells, mining coal, and

manufacturing engine parts), you may very well be content with engineering your own data-binding

solution. But if you have a more tempered nature like I do (thanks to my mother’s side), I’m delighted

when someone is thoughtful enough to create a solution for me. Thus my gratitude goes out to the

WinJS team who, knowing of the common need for data binding, created the WinJS.Binding API. This

supports one-time and one-way binding, both declaratively and procedurally, along with converter

functions. At present, WinJS does not provide for two-way binding, but such structures aren’t difficult

to set up in code, as we’ll see.

Within the WinJS structures, multiple target elements can be bound to a single data source.

WinJS.Binding, in fact, provides for what are called templates, basically collections of target elements

that are together bound to the same data source. Though we don’t recommend it, it’s possible to bind

a single target element to multiple sources, but this gets tricky to manage properly. A better approach

in such cases is to wrap those separate sources into a single object and bind to that instead.

The best way, now, to understand WinJS.Binding is to first see look at how we’d write our own

binding code and then see the solution that WinJS offers. For these examples, we’ll use the same

scenario as shown in Figure 4-10, where we have a source object bound to two separate UI elements,

with one converter that changes a source property into a color.

One-Time Binding

One-time binding, as mentioned before, is essentially what you do whenever you just assign values to

properties of an element. So, given this HTML:

<!-- Markup: the UI elements we'll bind to a data object -->

<section id="loginDisplay1">

 <p>You are logged in as </p>

</section>

and the following data source object:

var login1 = { name: "liam", id: "12345678",

 photoURL: "http://www.kraigbrockschmidt.com/images/Liam07.png", userType: "kid"};

we can bind as follows, also using a converter function in the process:

//"Binding" is done one property at a time, with converter functions just called directly

var name = document.getElementById("loginName1");

name.innerText = login1.name;

157

name.style.color = userTypeToColor1(login1.userType);

document.getElementById("photo1").src = login1.photoURL;

 function userTypeToColor1(type) {

 return type == "kid" ? "Orange" : "Black";

 }

This gives the following result, in which I shamelessly publish a picture of my kid:

The code for this can be found in Test 1 of the BindingTests example for this chapter. With WinJS

we can accomplish the same thing by using a declarative syntax and a processing function. In markup,

we use the attribute data-win-bind to map target properties of the containing element to properties

of the source object that is given to the processing function, WinJS.Binding.processAll.

The value of data-win-bind is a string of property pairs. Each pair’s syntax is <target property> :

<source property> [<converter>] where the converter is optional. Each property identifier can use

dot notation as needed, and property pairs are separated by a semicolon as shown in the HTML:

<section id="loginDisplay2">

 <p>You are logged in as

 <span id="loginName2"

 data-win-bind="innerText: name; style.color: userType Tests.userTypeToColor">

 </p>

</section>

Note that array lookup on the source property using []’s is not supported, though a converter could

do that. On the target, if that object has a JavaScript property that you want to refer to using a

hyphenated identifier, you can use the following syntax:

A similar syntax is necessary for data-binding target attributes, such as the aria-* attributes for

accessibility. Because these are not JavaScript properties, a special converter (or initializer as it is more

property called) named WinJS.Binding.setAttribute is needed:

<label data-win-bind="this['aria-label']: title WinJS.Binding.setAttribute"></label>

Also see WinJS.Binding.setAttributeOneTime for one-time binding for attributes.

158

Sidebar: Data-Binding Properties of WinJS Controls

When targeting properties on a WinJS control and not its root (containing) element, the target

property names should begin with winControl. Otherwise you’ll be binding to nonexisting

properties on the root element. When using winControl, the bound property serves the same

purpose as specifying a fixed value in data-win-options. For example, the markup used earlier

in the “Example: WinJS.UI.Rating Control” section could use data binding for its averageRating

and userRating properties as follows (assuming myData is an appropriate source):

<div id="rating1" data-win-control="WinJS.UI.Rating"

 data-win-options="{onchange: changeRating}"

 data-win-bind="{winControl.averageRating: myData.average,

 winControl.userRating: myData.rating}">

</div>

Anyway, assuming we have a data source as before:

var login2 = { name: "liamb", id: "12345678",

 photoURL: "http://www.kraigbrockschmidt.com/images/Liam07.png", userType: "kid"};

We convert the markup to actual bindings using WinJS.Binding.processAll:

//processAll scans the element's tree for data-win-bind, using given object as data context

WinJS.Binding.processAll(document.getElementById("loginDisplay2"), login2);

This code, Test2 in the example, produces the same result as Test 1. The one added bit here is that

we need to define the converter function so that it’s globally accessible and marked for processing.

This can be accomplished with a namespace that contains a function (actually called an initializer, as

we’ll discuss in the “Binding Initializers” section near the end of this chapter) created by

WinJS.Binding.converter:

//Use a namespace to export function from the current module so WinJS.Binding can find it

WinJS.Namespace.define("Tests", {

 userTypeToColor: WinJS.Binding.converter(function (type) {

 return type == "kid" ? "Orange" : "Black";

 })

});

As with control constructors defined with WinJS.Class.define, WinJS.Binding.converter

automatically marks the functions it returns as safe for processing.

We could also put the data source object and applicable converters within the same namespace.29

For example (in Test 3), if we placed our login data object and the userTypeToColor function in a

LoginData namespace, the markup and code would look like this:

29 More commonly, converters would be part of a namespace in which applicable UI elements are defined, because they’re

more specific to the UI than to a data source.

159

<span id="loginName3"

 data-win-bind="innerText: name; style.color: userType LoginData.userTypeToColor">

WinJS.Binding.processAll(document.getElementById("loginDisplay3"), LoginData.login);

WinJS.Namespace.define("LoginData", {

 login : {

 name: "liamb", id: "12345678",

 photoURL: "http://www.kraigbrockschmidt.com/images/Liam07.png",

 userType: "kid"

 },

 userTypeToColor: WinJS.Binding.converter(function (type) {

 return type == "kid" ? "Orange" : "Black";

 })

 });

In summary, for one-time binding WinJS.Binding simply gives you a declarative syntax to do

exactly what you’d do in code, with a lot less code. Because it’s all just some custom markup and a

processing function, there’s no magic here, though such useful utilities are magical in their own way! In

fact, the code here is really just one-way binding without having the source fire any change events.

We’ll see how to do that with WinJS.Binding.as in a moment after a couple more notes.

First, WinJS.Binding.processAll is actually an async function that returns a promise. Any

completed handler given to its done method will be called when the processing is finished, if you have

additional code that’s depending on that state. Second, you can call WinJS.Binding.processAll more

than once on the same target element, specifying a different source object (data context) each time.

This won’t replace any existing bindings, mind you—it just adds new ones, meaning that you could end

up binding the same target property to more than one source, which could become a big mess. So

again, a better approach is to combine those sources into a single object and bind to that, using dot

notation to identify nested properties.

One-Way Binding

The goal for one-way binding is, again, to update a target property, typically in a UI control, when the

bound source property changes. That is, one-way binding means to effectively repeat the one-time

binding process whenever the source property changes.

In the code we saw above, if we changed login.name after calling WinJS.Binding.processAll,

nothing will happen in the output controls. So how can we automatically update the output?

Generally speaking, this requires that the data source maintains a list of bindings, where each

binding could describe a source property, a target property, and a converter function. The data source

would also need to provide methods to manage that list, like addBinding, removeBinding, and so forth.

Thirdly, whenever one of its bindable (or observable) properties changes it goes through its list of

bindings and updates any affected target property accordingly.

160

These requirements are quite generic; you can imagine that their implementation would pretty

much join the ranks of classic boilerplate code. So, of course, WinJS provides just such an

implementation! In this context, sources are called observable objects, and the function

WinJS.Binding.as wraps any arbitrary object with just such a structure. (It’s a no-op for nonobjects.)

Conversely, WinJS.Binding.unwrap removes that structure if there’s a need. Furthermore,

WinJS.Binding.define creates a constructor for observable objects around a set of properties

(described by a kind of empty object that just has property names). Such a constructor allows you to

instantiate source objects dynamically, as when processing data retrieved from an online service.

So let’s see some code. Going back to the last example above (Test 3), any time before or after

WinJS.Binding.processAll we can take the LoginData.login object and make it observable as

follows:

var loginObservable = WinJS.Binding.as(LoginData.login)

This is actually all we need to do—with everything else the same as before, we can now change a

bound property within the loginObservable object:

loginObservable.name = "liambro";

This will update the target property:

Here’s how we’d then create and use a reusable class for an observable object (Test 4 in the

BindingTests example). Notice the object we pass to WinJS.Binding.define contains property names,

but no values (they’ll be ignored):

WinJS.Namespace.define("LoginData", {

 //...

 //LoginClass becomes a constructor for bindable objects with the specified properties

 LoginClass: WinJS.Binding.define({name: "", id: "", photoURL: "", userType: "" }),

});

With that in place, we can create an instance of that class, initializing desired properties. In this

example, we’re using a different picture and leading userType uninitialized:

var login4 = new LoginData.LoginClass({ name: "liamb",

 photoURL: "http://www.kraigbrockschmidt.com/images/Liam08.jpg" });

Binding to this login object, we’d see that the username initially comes out black.

161

//Do the binding (initial color of name would be black)

WinJS.Binding.processAll(document.getElementById("loginDisplay"), login4);

Updating the userType property in the source (as below) would then cause an update the color of

the target property, which happens through the converter automatically:

login4.userType = "kid";

Implementing Two-Way Binding

To implement two-way binding, the process is straightforward:

1. Add listeners to the appropriate UI element events that relate to bound data source properties.

2. Within those handlers, update the data source properties.

The data source should be smart enough to know when the new value of the property is already the

same as the target property, in which case it shouldn’t try to update the target lest you get caught in a

loop. The observable object code that WinJS provides does this type of check for you.

To see an example of this, refer to the Declarative Binding sample in the SDK, which listens for the

change event on text boxes and updates values in its source accordingly.

Additional Binding Features
If you take a look at the WinJS.Binding reference in the documentation, you’ll see a number of other

goodies in the namespace. Let me briefly outline the purpose of these.

If you already have a defined class (from WinJS.Class.define) and want to make it observable, use

WinJS.Class.mix as follows:

var MyObservableClass = WinJS.Class.mix(MyClass, WinJS.Binding.mixin,

 WinJS.Binding.expandProperties(MyClass));

WinJS.Binding.mixin here contains a standard implementation of the binding functions that

WinJS expects. WinJS.Binding.expandProperties creates an object whose properties match those in

the given object (the same names), with each one wrapped in the proper structure for binding. Clearly,

this type of operation is useful only when doing a mix, and it’s exactly what WinJS.Binding.define

does with the oddball, no-values object we give to it.

162

http://code.msdn.microsoft.com/windowsapps/DeclarativeBinding-bfcb42a5
http://msdn.microsoft.com/en-us/library/windows/apps/br229775.aspx

If you remember from a previous section, one of the requirements for an observable object is that is

contains methods to manage a list of bindings. An implementation of such methods is contained in the

WinJS.Binding.observableMixin object. Its methods are:

 bind Saves a binding (property name and a function to invoke on change).

 unbind Removes a binding created by bind.

 Notify Goes through the bindings for a property and invokes the functions

associated with it. This is where WinJS checks that the old and new values are actually

different and where it also handles cases where an update for the same target is already

in progress.

Building on this is yet another mixin, WinJS.Binding.dynamicObservableMixin (which is what

WinJS.Binding.mixin is), which adds methods for managing source properties as well:

 setProperty Updates a property value and notifies listeners if the value changed.

 updateProperty Like setProperty, but returns a promise that completes when all

listeners have been notified (the result in the promise is the new property value).

 getProperty Retrieves a property value as an observable object itself, which makes it

possible to bind within nested object structures (obj1.obj2.prop3, etc.).

 addProperty Adds a new property to the object that is automatically enabled for

binding.

 removeProperty Removes a property altogether from the object.

Why would you want all of these? Well, there are some creative uses. You can call

WinJS.Binding.bind, for example, directly on any observable source when you want to hook up

another function to a source property. This is like adding event listeners for source property changes,

and you can have as many listeners as you like. This is helpful for wiring up two-way binding, and it

doesn’t in any way have to be related to manipulating UI. The function just gets called on the property

change. This could be used to autosync a back-end service with the source object.

The Declarative Binding sample in the SDK (again, found here) also shows calling bind with an

object as the second parameter, a form that allows for binding to nested members of the source. The

syntax looks like this: bind(rootObject, { property: { sub-property: function(value) { ... } }

})—whatever matches the source object. With such an object in the second parameter, bind will make

sure to invoke all the functions assigned to the nested properties. In such a case, the return value of

bind is an object with a cancel method that will clear out this complex binding.

The notify method, for its part, is something you can call directly to trigger notifications. This is

useful with additional bindings that don’t necessarily depend on the values themselves, just the fact

that they changed. The major use case here is to implement computed properties—ones that change

in response to another property value changing.

163

http://code.msdn.microsoft.com/windowsapps/DeclarativeBinding-bfcb42a5

The system here also has some intelligent handling of multiple changes to the same source

property. After the initial binding, further change notifications are asynchronous and multiple pending

changes to the same property are coalesced. So, if in our example we made several changes to the

name property in quick succession:

login.name = "Kenichiro";

login.name = "Josh";

login.name = "Chris";

only one notification for the last value would be sent and that would be the value that shows up in

bound targets.

Finally, here are a few more functions hanging off WinJS.Binding:

 oneTime A function that just loops through the given target (destination) properties

and sets them to the value of the associated source properties. This function can be

used for true one-time bindings, as is necessary when binding to WinRT objects. It can

also be used directly as an initializer within data-win-bind if the source is a WinRT

object.

 defaultBind A function that does the same as oneTime but establishes one-way

binding between all the given properties. This also serves as the default initializer for all

relationships in data-win-bind when specific initializer isn’t specified.

 declarativeBind The actual implementation of processAll. (The two are identical.)

In addition to the common parameters (the root target element and the data context),

it also accepts a skipRoot parameter (if true, processing does not bind properties on

the root element, only its children, which is useful for template objects) and

bindingCache (an optimization for holding the results of parsing the data-win-bind

expression when processing template objects).

Binding Initializers

In our earlier examples we saw some uses of converter functions that turn some bit of source data into

whatever a target property expects. But the function you specify in data-win-bind is more properly

called an initializer because in truth it’s only ever called once.

Say what? Aren’t converters used whenever a bound source property gets copied to the target?

Well, yes, but we’re actually talking about two different functions here. Look carefully at the code

structure for the userTypeToColor function we used earlier:

userTypeToColor: WinJS.Binding.converter(function (type) {

 return type == "kid" ? "Orange" : "Black";

})

The userTypeToColor function itself is an initializer. When it’s called—once and only once—its

return value from WinJS.Binding.converter is the converter that will then be used for each property

update. That is, the real converter function is not userTypeToColor—it’s actually a structure that wraps

164

the anonymous function given to WinJS.Binding.converter.

Under the covers, WinJS.Binding.converter is actually using bind to set up relationships between

source and target properties, and it inserts your anonymous conversion function into those

relationships. Fortunately, you generally don’t have to deal with this complexity and can just provide

that conversion function, as shown above.

Still, if you want a raw example, check out the Declarative Binding sample again, as it shows how to

create a converter for complex objects directly in code without using WinJS.Binding.converter. In

this case, that function needs to be marked as safe for processing if it’s referenced in markup. Another

function, WinJS.Binding.initializer exists for that exact purpose; the return value of

WinJS.Binding.converter passes through that same method before it comes back to your app.

Binding Templates and Lists

Did you think we’d exhausted WinJS.Binding yet? Well, my friend, not quite! There are two more

pieces to this rich API that lead us directly into the next chapter. (Now you know the real reason I put

this entire section where I did!). The first is WinJS.Binding.List, a bindable collection data source

that—not surprisingly—is very useful when working with collection controls.

WinJS.Binding.Template is also a unique kind of custom control. In usage, as you can again see in

the Declarative Binding sample, you declare an element (typically a div) with data-win-control =

"WinJS.Binding.Template". In that same markup, you specify the template’s contents as child

elements, any of which can have data-win-bind attributes. What’s unique is that when

WinJS.UI.process or processAll hits this markup, it instantiates the template and actually pulls

everything but the root element out of the DOM entirely. So what good is it then?

Well, once that template exists, anyone can call its render method to create a copy of that template

within some other element, using some data context to process any data-win-bind attributes therein

(typically skipping the root element itself, hence that skipRoot parameter in the

WinJS.Binding.declarativeBind method). Furthermore, rendering a template multiple times into the

same element creates multiple siblings, each of which can have a different data source.

Ah ha! Now you can start to see how this all makes perfect sense for collection controls and

collection data sources. Given a collection data source and a template, you can iterate over that source

and render a copy of the template for each source item into some other element. Add a little

navigation or layout within that containing element and voila! You have the beginnings of what we

know as the WinJS.UI.FlipView and WinJS.UI.ListView controls, as we’ll explore next.

What We’ve Just Learned

 The overall control model for HTML and WinJS controls, where every control consists of declarative

markup, applicable CSS, and methods, properties, and events accessible through JavaScript.

165

http://msdn.microsoft.com/en-us/library/windows/apps/hh700774.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229723.aspx

 Standard HTML controls have dedicated markup; WinJS controls use data-win-control attributes,

which are processed using WinJS.UI.process or WinJS.UI.processAll.

 Both types of controls can also be instantiated programmatically using new and the appropriate

constructor, such as Button or WinJS.UI.Rating.

 All controls have various options that can be used to initialize them. These are given as specific

attributes in HTML controls and within the data-win-options attribute for WinJS controls.

 All controls have standard styling as defined in the WinJS stylesheets: ui-light.css and ui-dark.css.

Those styles can be overridden as desired, and some style classes, like win-backbutton, are used to

style a standard HTML control to look like a Windows-specific control.

 Windows 8 apps have rich styling capabilities for both HTML and WinJS controls alike. For HTML

controls, -ms-*-prefixed pseudo-selectors allow you to target specific pieces of those controls. For

WinJS controls, specific parts are styled using win-* classes that you can override.

 Custom controls are implemented in the same way WinJS controls are, and WinJS provides standard

implementations of methods like addEventListener. Custom controls can also be shown in Blend’s

Assets panel either for a single project or for all projects.

 WinJS provides declarative data-binding capabilities for one-time and one-way binding, which can

employ conversion functions. It even provides the capability to create an observable (one-way

bindable) data source from any other object.

 WinJS also provides support for bindable collections and templates that can be repeatedly rendered

for different source objects into the same containing element, which is the basis for collection

controls.

166

Chapter 5

Collections and Collection Controls

It’s a safe bet to say that wherever you are, right now, you’re probably surrounded by quite a number

of collections. This book you’re reading is a collection of chapters, and chapters are a collection of

pages. Those pages are collections of paragraphs, which are collections of words, which are collections

of letters, which are (assuming you’re reading this electronically) collections of pixels. On and on….

Your body, too, has collections on many levels, which is very much what one studies in college-level

anatomy courses. Looking around my office and my home, I see even more collections: a book shelf

with books; scrapbooks with pages and pages with pictures; cabinets with cans, boxes, and bins of

food; my son’s innumerable toys; the DVD case…even the forest outside is a collection of trees and

bushes, which then have branches, which then have leaves. On and on….

We look at these things as collections because we’ve learned how to generalize specific instances of

unique things—like leaves or pages or my son’s innumerable toys—into categories or groups. This

gives us powerful means to organize and manage those things (except for the clothes in my closet, as

my wife will attest). And just as the physical world around us is very much made of collections, the

digital world that we use to represent the physical is naturally full of collections as well. Thus

programming languages like JavaScript have constructs like arrays to organize and manage collection

data, and environments like Windows 8 provide collection controls through which we can visualize and

manipulate that data.

In this chapter we’ll turn our attention to the two collection controls provided by WinJS: the

FlipView, which shows one item from a collection at a time, and the ListView, which shows many items

in different arrangements. As you might expect, the ListView is the richer of the two, and as it’s really

the centerpiece of many app designs, we’ll be spending the bulk of this chapter exploring its depths,

along with the concept and implementation of semantic zoom (another control, in fact).

As both collection controls can handle items of arbitrary complexity (both in terms of data and

presentation, unlike the simple HTML listbox and combobox controls), as well as an arbitrary number

of items, they naturally build on the foundations of data binding and template controls we just saw at

the end of Chapter 4, “Controls, Control Styling, and Data Binding.” They also have a close relationship

to collection data sources, which we’ll specifically examine as well, and their own styling and behavioral

considerations.

But let’s not exhaust our minds here at the outset of this chapter with theory or architectural

intricacies! Instead, let’s just jump into some code to explore the core aspects of both controls.

167

Collection Control Basics

To seek the basics of the collection controls, we’ll first look at the FlipView which will introduce us to

item templates and data sources. We’ll then see how these also apply to the ListView control, then look

at grouping items within a ListView..

Quickstart #1: The HTML FlipView Control Sample
As shown in Figure 5-1, the FlipView sample in the Windows SDK is both a great piece of reference

code for this control and a great visual tool through which to explore the control itself. (I’m also

extremely grateful that I’ve not had to write such samples for this book!) For the purposes of this

Quickstart, let’s just look at the first scenario of populating the control from a simple data source and

using a template for rendering the items, as these mechanisms are shared with the ListView. We’ll

come back to the other FlipView scenarios later in the chapter.

Figure 5-1 The SDK’s FlipView control sample; the FlipView is the control displaying the picture.

As FlipView is a WinJS control, whose constructor is WinJS.UI.FlipView, we declare it in markup

with data-win-control and data-win-options attributes (see html/simpleFlipview.html):

<div id="simple_FlipView" class="flipView" data-win-control="WinJS.UI.FlipView"

 data-win-options="{ itemDataSource: DefaultData.bindingList.dataSource,

 itemTemplate: simple_ItemTemplate }">

</div>

And of course, WinJS.UI.processAll is called in the page-loading process to instantiate the

control. In the FlipView’s options we can immediately see the two critical pieces to make the control

work: a data source that provides the goods for each item and a template to render them.

168

http://code.msdn.microsoft.com/windowsapps/FlipView-control-sample-18e434b4

If you were paying attention at the end of Chapter 4, you’ve probably guessed that the template is

an instance of WinJS.Binding.Template. And you’re right! That piece of markup, in fact, comes just

before the control declaration in simpleFlipview.html.

<div id="simple_ItemTemplate" data-win-control="WinJS.Binding.Template" style="display: none">

 <div class="overlaidItemTemplate">

 <div class="overlay">

 <h2 class="ItemTitle" data-win-bind="innerText: title"></h2>

 </div>

 </div>

</div>

Note that a template must always be declared in markup before any controls that reference them:

WinJS.UI.processAll must instantiate the template first because the collection control will be asking

the template to render its contents for each item in the data source. Also remember from Chapter 4

that instantiating a template removes its contents from the DOM so that it cannot be altered at run

time. You can see this when running the sample: expand the nodes in Visual Studio’s DOM Explorer or

Blend’s Live DOM pane, and you’ll see the root div of the template but none of its children.

In the sample, the prosaically named ItemTemplate is made of an img element and another div

containing an h2. The overlay class on that latter div, if you look at the Figure 5-1 carefully, is clearly

styled with a partially transparent background color (see css/default.css for the .overlaidItem-

Template .overlay selector). This shows that you can use any elements you want in a template,

including other WinJS controls. In the latter case, these are picked up when WinJS.UI.process/

processAll is invoked on the template. 30

You can also see that the template uses WinJS data-binding attributes, where the img.src, img.alt,

and h2.innerText properties are bound to data properties called picture and title. This shows how

properties of two target elements can be bound to the same source property. (Remember that if you’re

binding to properties of the WinJS control itself, rather than its child elements, those properties must

begin with winControl.)

For the data source, the FlipView’s itemDataSource option is assigned the value of

DefaultData.bindingList.dataSource that you can find in js/DefaultData.js:

var array = [

 { type: "item", title: "Cliff", picture: "images/Cliff.jpg" },

 { type: "item", title: "Grapes", picture: "images/Grapes.jpg" },

 { type: "item", title: "Rainier", picture: "images/Rainier.jpg" },

 { type: "item", title: "Sunset", picture: "images/Sunset.jpg" },

 { type: "item", title: "Valley", picture: "images/Valley.jpg" }

];

var bindingList = new WinJS.Binding.List(array);

30 Note that for such controls to be fully interactive, assign the win-interactive class to them, otherwise the surrounding

control (and this applies to ListView as well) will swallow input events before they reach those controls.

169

WinJS.Namespace.define("DefaultData", {

 bindingList: bindingList,

 array: array

});

We briefly met WinJS.Binding.List at the end of Chapter 4; its purpose is to turn an in-memory

array into an observable data source for one-way binding. The WinJS.Binding.List wrapper is also

necessary because the FlipView and ListView controls cannot work directly against a simple array, even

for one-time binding. They expect their data sources to provide the methods of the WinJS.UI.-

IListDataSource interface. The dataSource property of a WinJS.Binding.List, as in

bindingList.dataSource, provides exactly this, and you’ll always use this property in conjunction with

FlipView and ListView. (It exists for no other purpose, in fact.) If you forget and attempt to just bind to

the WinJS.Binding.List directly, you’ll see an exception that says, “Object doesn’t support property

or method ‘createListBinding’.”

Suffice it to say that WinJS.Binding.List will become your intimate friend for in-memory data

sources. Of course, you won’t typically be using hard-coded data like the sample. You’ll instead load

array data from a file or obtain it from a web service, at which point WinJS.Binding.List makes it

accessible to collection controls.

Do note that WinJS.Binding.List fully supports dynamic data. If you look at its reference page in

the documentation, you’ll see that it looks a whole lot like a JavaScript array, with a length property

and the whole set of array methods from concat and indexOf to push, pop, and unshift. This is

entirely intentional: no need to make you relearn the basics!

It’s also important to note with FlipView, as well as ListView, that setting the itemDataSource

property for the control automatically sets up one-way binding, so any changes to the list object or

even the array on which it is built will trigger an automatic update in the bound control.

Quickstart #2a: The HTML ListView Essentials Sample
As I said before, the basic mechanisms for data sources and templates apply to the ListView control

exactly as it does to FlipView, which we can now see in the HTML ListView Essentials sample (shown in

Figure 5-2), specifically its first two scenarios of creating the control and responding to item events.

Because ListView can display multiple items at the same time, it needs one more piece in addition to

the data source and the template to describe how those items visually relate to one another. This is the

ListView’s layout property, which we see in the markup for Scenario 1 of this sample along with a few

other behavioral options (html/scenario1.html):

<div id="listView" data-win-control="WinJS.UI.ListView"

 data-win-options="{ itemDataSource: myData.dataSource,

 itemTemplate: smallListIconTextTemplate, selectionMode: 'none',

 tapBehavior: 'none', swipeBehavior: 'none', layout: { type: WinJS.UI.GridLayout } }">

</div>

170

http://msdn.microsoft.com/en-us/library/windows/apps/hh700774.aspx
http://code.msdn.microsoft.com/windowsapps/ListView-basic-usage-sample-fcc451db

Figure 5-2 The HTML ListView Essentials sample.

The ListView’s constructor, WinJS.UI.ListView, is, of course, called by the ubiquitous

WinJS.UI.processAll when the page control is loaded. The data source for this list is set to

myData.dataSource where myData is again a WinJS.Binding.List (defined at the top of js/data.js over

a simple array) and its dataSource property provides the needed interface.

The control’s item template is defined earlier in default.html with the id of

smallListIconTextTemplate and is essentially the same sort of thing we saw with the FlipView (an img

and some text elements), so I won’t list it here.

In the control options we see three behavioral properties: selectionMode, tapBehavior, and

swipeBehavior. These are all set to 'none' in this sample to disable selection and click behaviors

entirely, making the ListView a passive display. It can still be panned, but the items don’t respond to

input. (Also see the “Item Hover Styling” sidebar coming up.)

As for the layout property, this is an object of its own, whose type property indicates which layout

to use. WinJS.UI.GridLayout, as we’re using here, is a two-dimensional top-to-bottom then

left-to-right algorithm, suitable for horizontal panning. WinJS provides another layout type called

WinJS.UI.ListLayout, a one-dimensional top-to-bottom organization that’s suitable for vertical

panning, especially in snapped view. (We’ll see this with the Grid App project template shortly; the

ListView Essentials sample lacks a good snap view.)

Now while the ListView control in Scenario 1 only displays items, we often want those items to

respond to a click or tap. Scenario 2 shows this, where the tapBehavior property is set to 'invoke'

(see html/scenario2.html). This is the same as using tapBehavior: WinJS.UI.TapBehavior-

toggleSelect, as that’s just defined in the enumeration as “invoke”. This behavior will select or

deselect and item, depending on its state, and then invoke it. Other variations are directSelect,

171

http://msdn.microsoft.com/en-us/library/windows/apps/hh701303.aspx

where an item is always selected and then invoked, and invokeOnly where the item is invoked without

changing the selection state. You can also set the behavior to none so that clicks and taps are ignored.

When an item is invoked, the ListView control fires an itemInvoked event. You can wire up a

handler by using either addEventListener or the ListView’s oniteminvoked property. Here’s how

Scenario 2 does it (js/scenario2.js):

var listView = element.querySelector('#listView').winControl;

function itemInvokedHandler(eventObject) {

 eventObject.detail.itemPromise.done(function (invokedItem) {

 // Act on the item

 });

}

listView.addEventListener("iteminvoked", itemInvokedHandler, false);

Note that we’re listening for the event on the WinJS control, but it also works to listen for the event

on the containing element thanks to bubbling. This can be helpful if you need to add listeners to a

control before it’s instantiated, since the containing element will already be there in the DOM.

In the code above, you could also assign a handler by using the listView.oniteminvoked property

directly, or you can specify the handler in the iteminvoked property data-win-options. In any case,

the event object you receive in the handler contains a promise for the invoked item, not the item itself,

so you need to call its done method to obtain the actual item data if needed. It’s also good to know

that you should never change the ListView’s data source properties directly within an iteminvoked

handler (because you’ll probably cause an exception). If you have need to do that, place the change

code inside setImmediate so that you can yield back to the UI thread first.

Sidebar: Item Hover Styling

While disabling selection and tap behaviors on a ListView creates a passive control, hovering

over items with the mouse (or suitable touch hardware) still highlights each item; refer back to

Figure 5-2. But you can control this using the .win-container:hover pseudo-selector for the

desired control. For example, the following style rule removes the hover effect entirely:

#myListView .win-container:hover {

 background-color: transparent;

 outline: 0px;

}

Quickstart #2b: The ListView Grouping Sample
Displaying a list of items is great, but more often than not, a collection really needs another level of

organization—what we call grouping. This is readily apparently when I open the file drawer next to my

desk, which contains a collection of various important and not so important papers. Right away, on the

file folder tabs, I see my groups: Taxes, Financials, Community, PGE, Insurance, Cars, Writing Projects,

and Miscellany (among others). Clearly, then, we need a grouping facility within a collection control

172

and ListView is happy to oblige!

A core demonstration of grouping can be found in the HTML ListView Grouping and Semantic

Zoom sample (shown in Figure 5-3). As with the Essentials sample, the code in js/groupedData.js

contains a lengthy in-memory array around which we create a WinJS.Binding.List. Here’s a

condensation to show the item structure (I’d show the whole array, but this is making me hungry for

some dessert!):

var myList = new WinJS.Binding.List([

 { title: "Banana Blast", text: "Low-fat frozen yogurt", picture: "images/60Banana.png" },

 { title: "Lavish Lemon Ice", text: "Sorbet", picture: "images/60Lemon.png" },

 { title: "Creamy Orange", text: "Sorbet", picture: "images/60Orange.png" },

 ...

Here we have a bunch of items with title, text, and picture properties, and we can group them

really any way we like (and even change the groupings on the fly). As Figure 5-3 shows, the sample

groups these by the first letter of the title.

Figure 5-3 The HTML ListView Grouping and Semantic Zoom sample.

If you take a peek at the ListView reference, you’ll see that it works with two templates and two

collections: that is, alongside its itemTemplate and itemDataSource properties are ones called

groupHeaderTemplate and groupDataSource. These are used with the ListView’s GridLayout (the

default) to organize the groups and create the headers above the items.

The header template in html/scenario1.html is very simple (and the item template is like what we’ve

already seen):

<div id="headerTemplate" data-win-control="WinJS.Binding.Template">

 <div class="simpleHeaderItem">

 <h1 data-win-bind="innerText: title"></h1>

173

http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1
http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1
http://msdn.microsoft.com/en-us/library/windows/apps/br211833.aspx

 </div>

</div>

This is referenced in the control declaration (other options omitted):

<div id="listView" data-win-control="WinJS.UI.ListView"

 data-win-options="{ groupDataSource: myGroupedList.groups.dataSource,

 groupHeaderTemplate: headerTemplate }">

</div>

For the data sources, you can see that we’re now using a variable called myGroupedList with a

property inside it called groups. What’s all this about?

Well, let’s take a short conceptual detour. Although computers have no problem chewing on a

bunch of raw data like the myList array, human beings like to view data with a little more organization.

The three primary ways of doing this are grouping, sorting, and filtering. Grouping organizes items into

groups, as shown in Figure 5-3; sorting orders items according to various rules; and filtering provides a

subset of items that match certain criteria. In all three cases, however, you don’t want such operations

to actually change the underlying data: a user might want to group, sort, or filter the same data in

different ways from moment to moment.

Grouping, sorting, and filtering, then, are thus referred to as projections of the data: they’re all

connected to the same underlying data such that a change to an item in the projection will be

propagated back to the source, just as changes in the source are reflected in the projection.

The WinJS.Binding.List object provides methods to create these projections: createGrouped,

createSorted, and createFiltered. Each method produces a special form of a WinJS.Binding.List:

GroupedSortedListProjection, SortedListProjection, and FilteredListProjection, respectively.

That is, each projection is a bindable list in itself, with a few extra methods and properties that are

specific to the projection. You can even create a projection from a projection. For instance,

createGrouped(...).createFiltered(...) will create a filtered projection on top of a grouped

projection. (Note, however, that the list’s sort method applies the sorting in-place, just like the

JavaScript array’s sort.)

Now that we know about projections, we can see how myGroupedList is created:

var myGroupedList = myList.createGrouped(getGroupKey, getGroupData, compareGroups);

This method takes three functions. The first associates an item with a group: it receives an item and

returns the appropriate group string, known as the key. The key—which must be a string—can be

something that’s directly included in an item or it can be derived from item properties. In the sample,

the getGroupKey function returns the first character of the item’s title property (in upper case):

function getGroupKey(dataItem) {

 return dataItem.title.toUpperCase().charAt(0);

}

Be clear that this first function, referred to as the group key function, determines only the association

between the item and a group, nothing more. It also gets called for every item in the collection when

174

createGrouped is called, so it should be a quick operation.31 The data for the groups themselves,

which is the collection to which the header template is bound to, isn’t actually created until the group

projection’s groups method is invoked, as happens when our ListView’s groupedDataSource option

gets processed. At that point, the second function passed to createGrouped—the group data

function—gets called only once per group with a representative item for that group. In response, your

function returns an object for that group containing whatever properties you need for data binding.

In the sample, the getGroupData function (passed to createGrouped) simply returns an object with

a single title property that’s the same as the group key, but of course you can make that value

anything you want:

function getGroupData(dataItem) {

 return {

 title: dataItem.title.toUpperCase().charAt(0)

 };

}

If I could rewrite this sample, I’d probably name the title property of this group data object

something more distinct, like groupTitle, so it’d be very clear that it has nothing whatsoever to do with

the same-named property of the items. I point this out because if you look in scenario1.html at the

header template and the item template, you’ll see title properties used in both. Yet the data context

is entirely different in both cases: for the header template, it’s the collection generated by the return

values of your group data function; for the item template, it’s the grouped projection from

WinJS.Binding.List.createGrouped. Two different collections—remember that!

So why do we have the group data function separated out at all? Why not just create that collection

automatically from the group keys? It’s because you often want to include additional properties within

the group data that you might want to use in the header template or in a zoomed-out view (with

semantic zoom). Think of your group data function as providing a kind of summary information for

each group. (The header text is really only the most basic such summary.) Since this function is only

called once per group, rather than once per item, it’s the proper time to calculate or otherwise retrieve

summary-level data. For example, to show an item count in the group headers, we just need to include

that property in the objects returned by the group data function, then data-bind an element in the

header template to that property.

In the sample, we can use WinJS.Binding.List.createFiltered to obtain a projection of the list

filtered by the current key. The length property of this projection is then the number of items in the

group (note that I’m now reusing the group key function instead of repeating the code):

function getGroupData(dataItem) {

 var key = getGroupKey(dataItem);

 //Obtain a filtered projection of our list, checking for matching keys

 var filteredList = myList.createFiltered(function (item) {

31 If deriving the group key from an item at run time required an involved process, you’ll improve overall performance by

storing a prederived key in the item instead.

175

 return key == getGroupKey(item);

 });

 return {

 title: key,

 count: filteredList.length

 };

}

With this count property in the collection, we can use it in the header template:

<div id="headerTemplate" data-win-control="WinJS.Binding.Template" style="display: none">

 <div class="simpleHeaderItem">

 <h1 data-win-bind="innerText: title"></h1>

 <h6> items</h6>

 </div>

</div>

After a small tweak in css/scenario1.css—changing the simpleHeaderItem class height to 65px to

make a little more room—the list will now appears as follows:

Finally, back to WinJS.Binding.List.createGrouped, the third (and optional) function here is a

group sorter function, which is called to sort the group data collection and therefore the order in which

those groups appear in the ListView.32 This function receives two group keys and returns zero if they’re

equal, a negative number if the first key sorts before the second, and a positive if the second sorts

before the first. The compareGroups function in the sample does an alphabetical sort:

function compareGroups(left, right) {

 return left.toUpperCase().charCodeAt(0) - right.toUpperCase().charCodeAt(0);

}

For a two-level sort, first by the descending item count and then by the first character, we could

write the following:

function compareGroups(left, right) {

 var leftLen = filteredLengthFromKey(left);

 var rightLen = filteredLengthFromKey(right);

 if (leftLen != rightLen) {

 return rightLen - leftLen;

 }

32 This is entirely separate from creating a sorted projection of the items, for which you’d use

WinJS.Binding.List.createSorted.

176

 return left.toUpperCase().charCodeAt(0) - right.toUpperCase().charCodeAt(0);

}

function filteredLengthFromKey(key) {

 var filteredList = myData.list.createFiltered(function (item) {

 return key == getGroupKey(item);

 });

 return filteredList.length;

}

Debugging Your Grouping Functions

If your various grouping functions don’t seem to be working right, you can set breakpoints and

step through the code a few times, but this becomes tedious as the functions are called many,

many times for even modest collections. Instead, try using console.log to emit the parameters

sent to those functions and/or your return values. To see what’s coming into the group sorting

function, for example, try this code:

console.log("Comparing left = " + left + " to right = " + right);

ListView in the Grid App Project Template
Now that we’ve covered the details of the ListView control and in-memory data sources, we can finally

understand the rest of the Grid App project template in Visual Studio and Blend. As we covered in

Chapter 3 (in the ”The Navigation Process and Navigation Styles” section), this project template

provides an app structure built around page navigation: the home page (pages/groupedItems) displays

a collection of sample data (see js/data.js) in a ListView control, where each item’s presentation is

described by a WinJS.Binding.Template as are the group headings. Figure 5-4 shows the layout of

the home page and identifies the relevant ListView elements. As we also discussed before, tapping an

item navigates to the pages/itemDetail page and tapping a heading navigates to the

pages/groupDetail page, and now we can see how that all works with the ListView control.

177

Figure 5-4 ListView elements as shown in the Grid App template home page. (All colored items are added labels

and lines.)

The ListView, as in Figure 5-4, occupies the lower portion of the app’s contents. Because it can pan

horizontally, it actually extends all the way across; various CSS margins are used to align the first items

with the layout silhouette while allowing them to bleed to the left when the ListView is panned.

There’s quite a bit going on with the ListView in this project, so we’ll take one part at a time. For

starters, the control’s markup in groupedItems.html is very basic, where the only option is to indicate

that the items have no selection behavior:

<div class="groupeditemslist win-selectionstylefilled" aria-label="List of groups"

 data-win-control="WinJS.UI.ListView" data-win-options="{ selectionMode: 'none' }">

</div>

Switching over to groupedItems.js, the page’s ready method handles initialization:

ready: function (element, options) {

 var listView = element.querySelector(".groupeditemslist").winControl;

 listView.groupHeaderTemplate = element.querySelector(".headerTemplate");

 listView.itemTemplate = element.querySelector(".itemtemplate");

 listView.oniteminvoked = this._itemInvoked.bind(this);

 // (Keyboard handler initialization omitted)...

 this.initializeLayout(listView, appView.value);

 listView.element.focus();

},

Here you can see that the control’s templates can be set in code just as easily as from markup, and

in this case we’re using a class to locate the template element instead of an Id. Why does this work? It’s

178

because we’ve actually been referring to elements the whole time: the app host automatically creates a

variable for an element that’s named the same as its Id. It’s the same thing. In code you can also

provide a function instead of a template, which allows you to dynamically render each item

individually. More on this later.

You can also see how this page assigns a handler to the itemInvoked events (above ready), calling

WinJS.Navigation.navigate to go to the groupDetail or itemDetail pages as we saw in Chapter 3:

_itemInvoked: function (args) {

 if (appView.value === appViewState.snapped) {

 // If the page is snapped, the user invoked a group.

 var group = Data.groups.getAt(args.detail.itemIndex);

 this.navigateToGroup(group.key);

 } else {

 // If the page is not snapped, the user invoked an item.

 var item = Data.items.getAt(args.detail.itemIndex);

 nav.navigate("/pages/itemDetail/itemDetail.html", {

 item: Data.getItemReference(item) });

 }

}

navigateToGroup: function (key) {

 nav.navigate("/pages/groupDetail/groupDetail.html", { groupKey: key });

},

In this case we retrieve item data from the underlying collection (the getAt methods) rather than

using the item data itself, since group information needed for the first case isn’t part of an item

directly. We also see here that the page interprets item invocations differently depending on the view

state. This is because it actually switches both its layout and its data source when the view state

changes, as handled in the page’s internal _initializeLayout method, called both on startup and

from the page’s updateLayout function:

initializeLayout: function (listView, viewState) {

 if (viewState === appViewState.snapped) {

 listView.itemDataSource = Data.groups.dataSource;

 listView.groupDataSource = null;

 listView.layout = new ui.ListLayout();

 } else {

 listView.itemDataSource = Data.items.dataSource;

 listView.groupDataSource = Data.groups.dataSource;

 listView.layout = new ui.GridLayout({ groupHeaderPosition: "top" });

 }

},

A ListView’s layout, in short, can be changed at any time by setting its layout property. When the

view state is snapped, this is set to WinJS.UI.ListLayout, otherwise WinJS.UI.GridLayout (whose

groupHeaderPosition property can be "top" or "left"). You can also see that you can change a

ListView’s data source on the fly: in snapped state it’s a list of groups, otherwise it’s the list of items.

I hope you can now see why I introduced page navigation well before we got to ListView, because

this project gets quite complicated down in its depths! In any case, let’s now look at the templates for

179

this page (groupedItems.html):

<div class="headertemplate" data-win-control="WinJS.Binding.Template">

 <button class="group-header win-type-x-large win-type-interactive"

 data-win-bind="groupKey: key" role="link" tabindex="-1" type="button"

 onclick="Application.navigator.pageControl.navigateToGroup(event.srcElement.groupKey)" >

 </button>

</div>

<div class="itemtemplate" data-win-control="WinJS.Binding.Template">

 <div class="item">

 <div class="item-overlay">

 <h4 class="item-title" data-win-bind="textContent: title"></h4>

 <h6 class="item-subtitle win-type-ellipsis"

 data-win-bind="textContent: subtitle"></h6>

 </div>

 </div>

</div>

Again, we have the same use of WinJS.Binding.Template and various bits of data-binding syntax

sprinkled around the markup, not to mention the click handler assigned to the header text itself

which, like an item in snap view, navigated to the group detail page.

As for the data itself (that you’ll likely replace), this is defined in js/data.js again as an in-memory

array that feeds into WinJS.Binding.List. In the sampleItems array each item is populated with inline

data or other variable values. Each item also has a group property that comes from the sampleGroups

array. Unfortunately, this latter array has almost identical properties as the items array, which can get

confusing. To help clarify that a bit, here’s the complete property structure of an item:

{

 group : {

 key,

 title,

 subtitle,

 backgroundImage,

 description

 },

 title,

 subtitle,

 description,

 content,

 backgroundImage

}

As we saw with the ListView grouping sample earlier, the Grid App project template uses

createGrouped to set up the data source. What’s interesting to see here is that it sets up an initially

empty list, creates the grouped projection (omitting the optional sorter function), and then adds the

items by using the list’s push method:

180

var list = new WinJS.Binding.List();

var groupedItems = list.createGrouped(

 function groupKeySelector(item) { return item.group.key; },

 function groupDataSelector(item) { return item.group; }

);

generateSampleData().forEach(function (item) {

 list.push(item);

});

This clearly shows the dynamic nature of lists and ListView: you can add and remove items from the

data source, and one-way binding will make sure the ListView is updated accordingly. In such cases you

do not need to refresh the ListView’s layout—that happens automatically. I say this because there’s

been some confusion with the ListView’s forceLayout method, which you only need to call, as the

documentation states, “when making the ListView visible again after its style.display property had

been set to ‘none’.” You’ll find, in fact, that the Grid App code doesn’t use this method at all.

In data.js there are also a number of other utility functions, such as getItemsFromGroup, which uses

WinJS.Binding.List.createFiltered as we did earlier. Other functions provide for cross-referencing

between groups and items, as it’s needed to navigate between the items list, group details (where that

page shows only items in that group), and item details. All of these functions are wrapped up in a

namespace called Data at the bottom of data.js, so references to anything from this file are prefixed

elsewhere with Data..

And with that, I think you’ll be able to understand everything that’s going on in the Grid App

project template and you’ll be able to adapt it to your own needs. Just remember that all the sample

data is intended to be wholly replaced with real data that you obtain from other sources, like a file or

WinJS.xhr, and that you can wrap with WinJS.Binding.List. Some further guidance on this can be

found in the Create a blog reader tutorial on the Windows Dev Center, and although the tutorial uses

the Split App project template, there’s enough in common with the Grid App project template that the

discussion is really applicable to both.

The Semantic Zoom Control

Since we’ve already loaded up the HTML ListView Grouping and Semantic Zoom sample, and have

completed our first look at the collection controls, now is a good time to check out another very

interesting WinJS control: Semantic Zoom.

Semantic zoom lets users easily switch between two views of the same data: a zoomed-in view that

provides details and a zoomed-out view that provides more summary-level information. The primary

use case for semantic zoom is a long list of items (especially ungrouped items), where a user will likely

get really bored of panning all the way from one end to the other, no matter how fun it is to swipe the

screen with a finger. With semantic zoom, you can zoom out to see headers, categories, or some other

condensation of the data, and then tap on one of those items to zoom back into its section or group.

The design guidance recommends having the zoomed-out view fit on one to three screenfuls at most,

181

http://msdn.microsoft.com/en-us/library/windows/apps/Hh974582.aspx
http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1
http://msdn.microsoft.com/en-us/library/windows/apps/br229690.aspx

making it very easy to see and comprehend the whole data set.

Go ahead and try semantic zoom through Scenario 2 of the ListView Grouping and Semantic Zoom

sample. To switch between the views, use pinch-zoom touch gestures, Ctrl+/Ctrl- keystrokes,

Ctrl+mouse wheel, and/or a small zoom button that automatically appears in the lower-right corner of

the control, as shown in Figure 5-5. When you zoom out, you’ll see a display of the group headers, as

also shown in the figure.

Figure 5-5 Semantic zoom between the two views in the ListView Grouping and Semantic Zoom sample.

The control itself is quite straightforward to use. In markup, declare a WinJS control using the

WinJS.UI.SemanticZoom constructor. Within that element you then declare two (and only two) child

elements: the first defining the zoomed-in view, and the second defining the zoomed-out view. Here’s

how the sample does it with two ListView controls (plus the template used for the zoomed-out view):

<div id="semanticZoomTemplate" data-win-control="WinJS.Binding.Template" >

 <div class="semanticZoomItem">

 <h2 class="semanticZoomItem-Text" data-win-bind="innerText: title"></h2>

 </div>

</div>

<div id="semanticZoomDiv" data-win-control="WinJS.UI.SemanticZoom">

 <div id="zoomedInListView" data-win-control="WinJS.UI.ListView"

 data-win-options="{ itemDataSource: myGroupedList.dataSource,

 itemTemplate: mediumListIconTextTemplate,

 groupDataSource: myGroupedList.groups.dataSource,

 groupHeaderTemplate: headerTemplate,

 selectionMode: 'none', tapBehavior: 'none', swipeBehavior: 'none' }">

 </div>

182

 <div id="zoomedOutListView" data-win-control="WinJS.UI.ListView"

 data-win-options="{ itemDataSource: myGroupedList.groups.dataSource,

 itemTemplate: semanticZoomTemplate,

 selectionMode: 'none', tapBehavior: 'invoke', swipeBehavior: 'none' }" >

 </div>

</div>

The first child, zoomedInListView, is just like the ListView for Scenario 1 with group headers and

items; the second, zoomedOutListView, uses the groups as items and renders them with a different

template. The semantic zoom control simply switches between the two views on the appropriate input

gestures. When the zoom changes, the semantic zoom control fires a zoomchanged event where the

args.detail value in the handler is true when zoomed out, false when zoomed in. You might use

this event to make certain app bar commands available for the different views, such as commands in

the zoomed-out view to change sorting or filtering, which would then affect how the zoomed-in view

is displayed.

The control has a few other properties, such as enableButton (a Boolean to control the visibility of

the overlay button; default is true), locked (a Boolean that disables zooming in either direction and

can be set dynamically to lock the current zoom state; default is false), and zoomedOut (a Boolean

indicating if the control is zoomed out, so you can initialize it this way; default is false). There is also a

forceLayout method that’s used in the same case as the ListView’s forceLayout: namely, when you

remove a display: none style.

The zoomFactor property is an interesting one that determines how the control animates between

the two views. The animation is a combination of scaling and cross-fading that makes the zoomed-out

view appear to drop down from or rise above the plane of the control, depending on the direction of

the switch, while the zoomed-in view appears to sink below or come up to that plane. To be specific,

the zoomed-in view scales between 1 and zoomFactor while transparency goes between 1 and 0, and

the zoomed-out view scales between 1/zoomFactor and 1 while transparency goes between 0 and 1.

The default value for zoomFactor is 0.65, which creates a moderate effect. Lower values (minimum is

0.2) emphasize the effect, and higher values (maximum is 0.8) minimize it.

Where styling is concerned, you do most of what you need directly to the Semantic Zoom’s

children. However, to style the Semantic Zoom control itself you can override styles in

win-semanticzoom (for the whole control) and win-semanticzoomactive (for the active view). The

win-semanticzoombutton stylealso lets you style the zoom control button if needed.

It’s important to understand that semantic zoom is intended to switch between two views of the

same data and not to switch between completely different data sets (see Guidelines and checklist for

the Semantic Zoom control). Also, the control does not support nesting (that is, zooming out multiple

times to different levels). Yet this doesn’t mean you have to use the same kind of control for both

views: the zoomed-in view might be a list, and the zoomed-out view could be a chart, a calendar, or

any other visualization that makes sense. The zoomed-out view, in other words, is a great place to

show summary data that would be otherwise difficult to derive from the zoomed-in view. For example,

using the same changes we made to include the item count with the group data for Scenario 1 (see

183

http://msdn.microsoft.com/en-us/library/windows/apps/hh700396.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700396.aspx

“Quickstart #2b” above), we can just add a little more to the zoomed-out item template:

The other thing you need to know is that the semantic zoom control does not work with arbitrary

child elements. An exception about a missing zoomableView property will tell you this! Each child

control must provide an implementation of the WinJS.UI.IZoomableView interface through a property

called zoomableView. Of all built-in HTML and WinJS controls, only ListView does this, which is why you

typically see semantic zoom in that context, and why you can’t nest semantic zooms! However, you can

certainly provide this interface on a custom control, where the object returned by the constructor

should contain a zoomableView property, which is an object containing the methods of the interface.

Among these methods are beginZoom and endZoom for obvious purposes, and getCurrentItem and

setCurrentItem that enable the semantic zoom control to zoom in to the right group when it’s

tapped in the zoomed-out view.

For more details, check out the HTML SemanticZoom for custom controls sample in the Windows

SDK, which also serves as another example of a custom control.

FlipView Features and Styling

For all the glory that ListView merits as the richest and most sophisticated control in all of WinJS, we

don’t want to forget the humble FlipView! Thus before we delve wholly into ListView, let’s spend a few

pages covering FlipView and its features through the other scenarios in the FlipView Control sample.

It’s worth mentioning too that although this sample demonstrates the control’s capabilities in a

relatively small area, a FlipView can be any size, even occupying most of the screen. A common use for

the control, in fact, is to let users flip through full-sized images in a photo gallery. Of course, the

control can be used anywhere it’s appropriate, large or small. See Guidelines for FlipView controls for

more on how best to use the control.

Anyway, Scenario 2 in the sample (“Orientation and Item Spacing”) demonstrates the control’s

orientation property. This determines the placement of the arrow controls: left and right

(horizontal) or top and bottom (vertical) as shown below. It also determines the enter and exit

animations of the items and whether the control uses the left/right or up/down arrow keys for

keyboard navigation. This scenario also let you set the itemSpacing property, which determines the

amount of space between items when you swipe items using touch (below right). Its effect is not visible

184

http://msdn.microsoft.com/en-us/library/windows/apps/br229794.aspx
http://code.msdn.microsoft.com/windowsapps/SemanticZoom-for-custom-4749edab
http://code.msdn.microsoft.com/windowsapps/FlipView-control-sample-18e434b4
http://msdn.microsoft.com/en-us/library/windows/apps/hh850405

when using the keyboard or mouse to flip; to see it, you may need to use touch emulation in the Visual

Studio simulator to partly drag between items.

Scenario 3 (“Using interactive content”) shows the use of a template function instead of a declarative

template. We’ll talk more of such functions in “How Templates Really Work” later in this chapter, but

put simply, a template function or renderer creates elements and sets their properties procedurally,

which is essentially what WinJS.Binding.Template does from the markup you give it. This allows you

to render an item differently (that is, create different elements) depending on its actual data. In

Scenario 3, the data source contains a “table of contents” item at the beginning, for which the renderer

(a function called mytemplate in interactiveContent.js) creates a completely different item:

The scenario also sets up a listener for click events on TOC entries, the handler for which flips to

the appropriate item by setting the FlipView’s currentPage property. The picture items then have a

back link to the TOC. See the clickHandler function in the code for both of these actions.

Scenario 4 (“Creating a context control”) demonstrates adding a navigation control overlay to each

item:

185

The items themselves are again rendered using a declarative template, which in this case just

contains a placeholder div called ContextContainer for the navigation control (contextControl.html):

<div>

 <div id="contextControl_FlipView" class="flipView" data-win-control="WinJS.UI.FlipView"

 data-win-options="{ itemDataSource: DefaultData.bindingList.dataSource,

 itemTemplate: contextControl_ItemTemplate }">

 </div>

 <div id="ContextContainer"></div>

</div>

When the control is initialized in the processed method of contextControl.js, the sample calls the

FlipView’s async count method. The completed handler, countRetrieved, then creates the navigation

control using a row of styled radiobuttons in a row. The onpropertychange handler for each

radiobutton then sets the FlipView’s currentPage property.

Scenario 4 also sets up listeners for the FlipView’s pageselected and pagevisibilitychanged

events. The first is used to update the navigation radiobuttons when the user flips between pages. The

other is used to prevent clicks on the navigation control while a flip is happening. (The event occurs

when an item changes visibility and is fired twice for each flip, once for the previous item, and again for

the new one.)

Scenario 5 (“Styling Navigation Buttons”) demonstrates the styling features of the FlipView, which

involves various win-* styles and pseudo-classes as shown here:

If you were to provide your own navigation buttons in the template (wired to the next and

previous methods), hide the default by adding display: none to the <control selector>

.win-navbutton style rule.

Finally, there are a few other methods and events for the FlipView that aren’t used in the sample, so

here’s a quick rundown of those:

 pageCompleted is an event that is raised when a flip to a new item is fully completed

(that is, the new item has been rendered). In contrast, the aforementioned

186

pageselected will fire when a placeholder item (not fully rendered) has been animated

in. See “Template Functions (Part 2)” at the end of this chapter.

 datasourcecountchanged is an event raised for obvious purpose, which something like

Scenario 4 would use to refresh the navigation control if items could be added or

removed from the data source.

 next and previous are methods to flip between items (like currentPage), which would

be useful if you provided your own navigation buttons.

 forceLayout is a method to call specifically when you make a FlipView visible by

removing a display: none style. (The FlipView sample actually calls this whenever you

change scenarios, but it’s not necessary because it never changes the style.)

 setCustomAnimations allows you to control the animations used when flipping

forward, flipping backward, and jumping to a random item.

For details on all of these, refer to the WinJS.UI.FlipView object documentation.

Data Sources

In all the examples we’ve seen thus far, we’ve been using an in-memory data source built on

WinJS.Binding.List. Clearly, however, there are other types of data sources and it certainly doesn’t

make sense to load everything into memory first. How, then, do we work with such sources?

WinJS provides some help in this area. First is the WinJS.UI.StorageDataSource object that works

with files in the file system, as the next section demonstrates with a FlipView and the Pictures Library.

The other is WinJS.UI.VirtualizedDataSource, which is meant for you to use as a base class for a

custom data source of your own, an advanced scenario that we’ll touch on only briefly.

A FlipView Using the Pictures Library
For everything we’ve seen in the FlipView sample already, it really begs for the ability to do something

completely obvious: flip through pictures files in a folder. Using what we’ve learned so far, how would

we implement something like that? We already have an item template containing an img tag, so

perhaps we just need some URIs for those files. Perhaps we could make an array of these using an API

like Windows.Storage.KnownFolders.picturesLibrary.getFilesAsync (declaring the pictures library

capability in the manifest, of course!), which would give us a bunch of StorageFile objects for which

we could call URL.createObjectURL. We could store those URIs in an array and then wrap it up with

WinJS.Binding.List:

var myFlipView = document.getElementById("pictures_FlipView").winControl;

Windows.Storage.KnownFolders.picturesLibrary.getFilesAsync()

 .done(function (files) {

187

http://msdn.microsoft.com/en-us/library/windows/apps/br211711.aspx

 var pixURLs = [];

 files.forEach(function (item) {

 var url = URL.createObjectURL(item, {oneTimeOnly: true });

 pixURLs.push({type: "item", title: item.name, picture: url });

 });

 var pixList = new WinJS.Binding.List(pixURLs);

 myFlipView.itemDataSource = pixList.dataSource;

 });

Although this approach works, it can start to consume quite a bit of memory with a larger number

of high-resolution pictures because each picture has to be fully loaded to be displayed in the FlipView.

This might be just fine for your scenario but in other cases would consume more resources than

necessary. It also has the drawback that the images are just stretched or compressed to fit into the

FlipView without any concern for aspect ratio, and this doesn’t produce the best results.

A better approach is to use the WinJS.UI.StorageDataSource that again works directly with the file

system instead of an in-memory array. I’ve implemented this as a Scenario 8 in the modified FlipView

sample code in this chapter’s companion content. (Another example can be found in the

StorageDataSource and GetVirtaulizedFilesVector sample.) Here we can use a shortcut to get a data

source for the Pictures library:

myFlipView.itemDataSource = new WinJS.UI.StorageDataSource("Pictures");

"Pictures" is a shortcut because the first argument to StorageDataSource is actually something

called a file query that comes from the Windows.Storage.Search API, a subject we’ll see in more detail

in Chapter 8, “State, Settings, Files, and Documents.” These queries, which feed into the powerful

Windows.Storage.StorageFolder.createFileQueryWithOptions function, are ways to enumerate

files in a folder along with metadata like album covers, track details, and thumbnails that are cropped

to maintain the aspect ratio. Shortcuts like "Pictures" (also "Music", "Documents", and "Videos" that

all require the associated capability in the manifest) just create typical queries for those document

libraries.

The caveat with StorageDataSource is that it’s doesn’t directly support one-way binding, so you’ll

get an exception if you try to refer to item properties directly in a template. To work around this, you

have to explicitly use WinJS.Binding.oneTime as the initializer function for each property:

<div id="pictures_ItemTemplate" data-win-control="WinJS.Binding.Template">

 <div class="overlaidItemTemplate">

 <img class="image" data-win-bind="src: thumbnail InitFunctions.thumbURL;

 alt: name WinJS.Binding.oneTime" />

 <div class="overlay">

 <h2 class="ItemTitle" data-win-bind="innerText: name WinJS.Binding.oneTime"></h2>

 </div>

 </div>

</div>

In the case of the img.src property, the file query gives us items of type Windows.Storage.-

188

http://msdn.microsoft.com/en-us/library/windows/apps/br212650.aspx
http://code.msdn.microsoft.com/windowsapps/Data-source-adapter-sample-3d32e535
http://msdn.microsoft.com/en-us/library/windows/apps/br230579.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211591.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.bulkaccess.fileinformation.aspx

BulkAccess.FileInformation (the source variable in the code below), which contains a thumbnail

image, not a URI. To convert that image data into a URI, we need to use our own binding initializer:

WinJS.Namespace.define("InitFunctions", {

 thumbURL: WinJS.Binding.initializer(function (source, sourceProp, dest, destProp) {

 if (source.thumbnail) {

 dest.src = URL.createObjectURL(source.thumbnail, { oneTimeOnly: true });

 }

 })

});

In this initializer, the src : thumbnail part of data-win-bind is actually ignored because we’re just

setting the img’s src property directly to source.thumbnail; this is just a form of one-way binding.

Note that thumbnails aren’t always immediately available in the FileInformation object, which is

why we have to verify that we actually have one before creating a URI for it. This means that quickly

flipping through the images might show some blanks. To solve this particular issue, we can listen for

the FileInformation.onthumbnailupdated event and update the item at that time. The best way to

accomplish this is to use the StorageDataSource.loadThumbnail helper, which helps avoid subtle

memory leak problems in this particular process. You can use this method within a binding initializer,

as demonstrated in Scenario 1 of the aforementioned StorageDataSource and

GetVirtaulizedFilesVector sample, or within a rendering function that takes the place of the declarative

template. We’ll do this for our FlipView sample later on, in “How Templates Really Work,” which also

lets us avoid the one-time binding tricks.

As a final note, Scenario 6 of the FlipView sample contains another example of a different data

source, specifically one working with Bing Search. For that, let’s look at custom data sources.

Custom Data Sources
Now that we’ve seen a collection control like FlipView working against two different data sources,

you’re probably starting to correctly guess that all data sources share some common characteristics

and a common programmatic interface. This is demonstrated again in Scenario 6 of the FlipView

sample as well as in the HTML ListView working with data sources sample shown in Figure 5-6, as we’ll

see in this section.

189

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.bulkaccess.fileinformation.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj553712.aspx
http://code.msdn.microsoft.com/windowsapps/Data-source-adapter-sample-3d32e535
http://code.msdn.microsoft.com/windowsapps/Data-source-adapter-sample-3d32e535
http://code.msdn.microsoft.com/windowsapps/ListView-custom-data-4dcfb128

Figure 5-6 The SDK’s Working with Data Sources sample.

Scenarios 2 and 3 of this sample both work against a WinJS.Binding.List data source, as we’ve

already seen, and provide buttons to manipulate that data source. Those changes are reflected in the

output. The difference between the two scenarios is that Scenario 2 manipulates the data through

WinJS.Binding.List methods like move, whereas Scenario 3 manipulates the underlying data source

directly through a more generic ListDataSource API.

Because of data binding, changes to the data are reflected in the ListView control either way, but

there are three important differences. First, the ListDataSource interface is common to all data

sources, so any code you write against it will work for any kind of data source. Second, its methods are

generally asynchronous because a data source might be connected to an online service or other such

resource. Third, ListDataSource provides for batching changes together by calling beginEdits, which

will defer any change notifications to any external bound objects until endEdits is called. This allows

you to do bulk data editing in ways that can improve ListView performance.

Scenarios 1 and 4 of the sample then demonstrate how to create custom data sources. Scenario 1

creates a data source for Bing searches; Scenario 4 creates one for an in-memory array that you could

adapt to work against a data feed that’s only brought down from a service a little at a time. What’s

important for all these is that they implement something called a data adapter, which is an object with

the methods of the WinJS.UI.IListDataAdapter interface. This provides for capabilities like caching,

virtualization, change detection, and so forth. Fortunately, you get most of these methods by deriving

your class from WinJS.UI.VirtializedDataSource and then implementing those methods you need

to customize. In the sample, for instance, the bingImageSearchDataSource is defined as follows (see

js/BingImageSearchDataSource.js):

bingImageSearchDataSource = WinJS.Class.derive(WinJS.UI.VirtualizedDataSource,

 function (devkey, query) {

 this._baseDataSourceConstructor(new bingImageSearchDataAdapter(devkey, query));

190

http://msdn.microsoft.com/en-us/library/windows/apps/br211786.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br212603.aspx

 });

where the bingImageSearchDataAdapter class implements only the getCount and itemsFromIndex

methods directly.

For a further deep-dive on this subject beyond the sample, I refer you to a session from the 2011

//Build conference entitled APP210-T: Build data-driven collection and list apps in HTML5. Some of the

details have since changed (like the ArrayDataSource is now WinJS.Binding.List), but on the whole it

very much explains all the mechanisms. It’s also helpful to remember that you can use other languages

to write custom data sources as well, languages that could offer much higher performance within the

data source—or have access to higher-performant APIs—than JavaScript. That subject is well beyond

the scope of this book, but I at least wanted to mention the possibility.

How Templates Really Work

Earlier, when we looked at the Grid App project template, I mentioned that you can use a function

instead of a declarative template for properties like itemTemplate (FlipView and ListView) and

groupHeaderTemplate (ListView). This is a very important capability because it allows you to

dynamically render each item in a collection individually, using its particular contents to customize its

view. It also allows you to initialize item elements in ways that can’t be done in the declarative form,

such as delay-loading images, adding event handlers for specific parts of an item, and optimizing

performance.

We’ll return to some of these topics later on. For the time being, it’s helpful to understand exactly

what’s going on with declarative templates and how that relates to custom template functions.

Referring to Templates
As I noted before, when you refer to a declarative template in the FlipView or ListView controls, what

you’re actually referring to is an element, not an element Id. The Id works because the app host creates

variables with those names for the elements they identify. However, we don’t actually recommend this

approach, especially within page controls (which you’ll probably use often). The first concern is that

only one element can have a particular Id, which means you’ll get really strange behavior if you

happen to render the page control twice in the same DOM.

The second concern is a timing issue. The element Id variable that the app host provides isn’t

created until the chunk of HTML containing the element is added to the DOM. With page controls,

WinJS.UI.processAll is called before this time, which means that element Id variables for templates

in that page won’t yet be available. As a result, any controls that use an Id for a template will either

throw an exception or just show up blank. Both conditions are guaranteed to be terribly, terribly

confusing.

To avoid this issue with a declarative template, place the template’s name in its class attribute:

191

http://channel9.msdn.com/Events/BUILD/BUILD2011/APP-210T

<div data-win-control="WinJS.Binding.Template" class="myItemTemplate" ...></div>

Then in your control declaration, use the syntax select("<selector>") in the options record,

where <selector> is anything supported by element.querySelector:

<div data-win-control="WinJS.UI.ListView"

 data-win-options="{ itemTemplate: select('.myItemTemplate') }"></div>

There’s more to this, actually, than just a querySelector call. The select function in the options

syntax here searches from the root of its containing page control. If no match is found, it looks for

another page control higher in the DOM, then looks in there, continuing the process until a match is

found. This lets you safely use two page controls at once that both contain the same class name for

different templates, and each page will use the template that’s most local.

You can also retrieve the template element using querySelector directly in code and assign the

result to the itemTemplate property. This would typically be done in a page’s ready function, as

demonstrated in the Grid App project, and doing so avoids both concerns identified here because

querySelector will be scoped to the page contents and will happen after WinJS.UI.processAll.

Template Elements and Rendering
The next interesting question about template is this: what, exactly, do we get when instantiating a

WinJS.Binding.Template? This is more or less another WinJS control that turns into an element when

you call WinJS.UI.processAll. However, it’s different in that it removes all its child elements from the

DOM, as we know, so it never shows up by itself. It doesn’t even have a winControl property on its

containing element.

What is does have, however, is this exceptionally useful function called render. Given a data context

(an object with properties) and an element, render creates a full copy of the template inside the

element, resolving any data-binding relationships in the template, both in data-win-bind and

data-win-options attributes, using the data object. In short, think of a declarative template as a set of

instructions that the render method uses to do all the necessary createElement calls along with

setting properties and doing data binding.

As shown on the How to use templates to bind data topic, you can just instantiate and render a

template anywhere you want:

var templateElement = document.getElementById("templateDiv");

var renderHere = document.getElementById("targetElement");

renderHere.innerHTML = "";

WinJS.UI.process(templateElement).then(function (templateControl) {

 templateControl.render(myDataItem, renderHere);

});

It should be wholly obvious that this is exactly what FlipView and ListView controls do for each item

in a given data source. In the case of FlipView, it calls its item template’s render method each time you

switch to a different item in the data source. ListView iterates over its itemDataSource and calls the

192

http://msdn.microsoft.com/en-us/library/windows/apps/br229723.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700356.aspx

item template’s render for each item, and does something similar for its groupDataSource and the

groupHeaderTemplate.

Template Functions (Part 1): The Basics
Knowing now that a WinJS.Binding.Template control is basically just a set of declarative instructions

for its render method, it should be plainly obvious that you can just create a custom function to do the

same job directly In addition to an element, the FlipView/ListView itemTemplate properties and the

ListView groupHeaderTemplate property can also accept a renderer function. The controls use typeof

at run time to determine what you’ve assigned to these properties, so if you provide a template

element, the controls will call its render method; if you provide a function, the controls will just call

that function for each item that needs to be rendered. This provides a great deal of flexibility to

customize the template based on individual item data.

Indeed, a renderer allows you to individually control not only how the elements for each item are

constructed but also when. As such, renderers are the primary means through which you can

implement five progressive levels of optimization, especially for ListView. Warning! There be promises

ahead! Well, we’ll save most of that discussion for the end of the chapter, because we need to look at

other ListView features first. But here let’s at least look at the core structure of a renderer that applies

to both FlipView and ListView, which you can see in the HTML ListView Item Templating and the HTML

ListView Optimizing Performance samples. We’ll be drawing code from the latter.

For starters, you can specify a renderer by name in data-win-options for both the FlipView and

ListView controls. That function must be marked for processing as discussed in Chapter 4 since it

definitely participates in the WinJS.UI.processAll operation, so this is a great place to use

WinJS.Utilities.markSupportForProcessing. Note that if you assign a function to an itemTemplate

or groupHeaderTemplate property in JavaScript, it doesn’t need the mark.

In its basic form, a template function receives an item promise as its first argument and returns a

promise whose completed handler creates the elements for that item. Huh? Yeah, that confuses me

too! So let’s look at the basic structure in terms of two functions:

function basicRenderer(itemPromise) {

 return itemPromise.then(buildElement);

};

function buildElement (item) {

 var result = document.createElement("div");

 //Build up the item, typically using innerHTML

 return result;

}

The renderer is the first function above. It simply says, “When itemPromise is fulfilled, meaning the

item is available, call the buildElement function with that item.” By returning the promise from

itemPromise.then, we allow the collection control that’s using this renderer to chain the item promise

and the element-building promise together. This is especially helpful when the item data is coming

193

http://code.msdn.microsoft.com/windowsapps/ListView-item-templates-7d74826f
http://code.msdn.microsoft.com/windowsapps/ListView-performance-39fb71f0
http://code.msdn.microsoft.com/windowsapps/ListView-performance-39fb71f0

from a service or other potentially slow feed, and it’s very helpful with incremental page loading

because it allows the control to cancel the promise chain if the page is scrolled away before those

operations complete. In short, it’s a good idea!

Just to show it, here’s how we’d make a renderer directly usable from markup, as in

data-win-options = "{itemTemplate: Renderers.basic }":

WinJS.Namespace.define("Renderers", {

 basic: WinJS.Utilities.markSupportedForProcessing(function (itemPromise) {

 return itemPromise.then(buildElement);

 })

}

It’s also common to just place the contents of a function like buildElement directly within the

renderer itself, resulting in a more concise expression of the exact same structure:

function basicRenderer(itemPromise) {

 return itemPromise.then(function (item) {

 var result = document.createElement("div");

 //Build up the item, typically using innerHTML

 return result;

 })

};

What you then do inside the element creation function (whether named or anonymous) defines the

item’s layout and appearance. Returning to Scenario 8 that we’ve added to the FlipView sample, we

can take this declarative template, where we had to play some tricks to get data binding to work:

<div id="pictures_ItemTemplate" data-win-control="WinJS.Binding.Template">

 <div class="overlaidItemTemplate">

 <img class="image" data-win-bind="src: thumbnail InitFunctions.thumbURL;

 alt: name WinJS.Binding.oneTime" />

 <div class="overlay">

 <h2 class="ItemTitle" data-win-bind="innerText: name WinJS.Binding.oneTime"></h2>

 </div>

 </div>

</div>

and turn it into the following renderer, keeping the two functions here separate for the sake of clarity:

//Earlier: assign the template in code

myFlipView.itemTemplate = thumbFlipRenderer;

//The renderer (see Template Functions (Part 2) later in the chapter for optimizations)
function thumbFlipRenderer(itemPromise) {

 return itemPromise.then(buildElement);

};

//A function that builds the element tree
function buildElement (item) {

194

 var result = document.createElement("div");

 result.className = "overlaidItemTemplate";

 var innerHTML = "";

 var innerHTML += "<div class='overlay'>";

 innerHTML += "<h2 class='ItemTitle'>" + item.data.name + "</h2>";

 innerHTML += "</div>";

 result.innerHTML = innerHTML;

 //Set up a listener for thumbnailUpdated that will render to our img element

 var img = result.querySelector("img");

 WinJS.UI.StorageDataSource.loadThumbnail(item, img).then();

 return result;

}

Because we have the individual item in hand already, we don’t need to quibble over the details of

declarative data binding and converters: we can just extract the properties we need (from item.data)

and assign them accordingly. As before, remember that the thumbnail property of the

FileInformation item might not be set yet. This is where we can use the StorageDataSource.-

loadThumbnail method to listen for the FileInformation.onthumbnailupdated event. This helper

function will render the thumbnail into our img element when the thumbnail becomes available (with a

little animation to boot!).

You might also notice that I’m building most of the element by using the root div.innerHTML

property instead of calling createElement and appendChild and setting individual properties

explicitly. Except for very simple structures, setting innerHTML on the root element is more efficient

because we minimize the number of DOM API calls. This doesn’t matter so much for a FlipView control

whose items are rendered one at a time, but it becomes very important for a ListView with potentially

thousands of items. Indeed, when we start looking at performance optimizations, we’ll also want to

render the item in various stages, such as delay-loading images. We’ll see all the details in the

“Template Functions (Part 2): Promises, Promises!” section at the end of this chapter.

ListView Features and Styling

Having already covered data sources and templates along with a number of ListView examples, we can

now explore the additional features of the ListView control, such as layouts, styling considerations, and

cell spanning for multisize items. Optimizing performance then follows in the last section of this

chapter. First, however, let me answer a very important question.

When Is ListView the Wrong Choice?
ListView is the hands-down richest control in all of Windows. It’s very powerful, very flexible, and, as

we’re already learning, very deep and intricate. But for all that, sometimes it’s also just the wrong

choice! Depending on the design, it might be easier to just use basic HTML/CSS layout.

195

Conceptually, a ListView is defined by the relationship between three parts: a data source,

templates, and layout. That is, items in a data source, which can be grouped, sorted, and filtered, are

rendered using templates and organized with a layout (typically with groups and group headers). In

such a definition, the ListView is intended to help visualize a collection of similar and/or related items,

where their groupings also have a relationship of some kind.

With this in mind, the following factors strongly suggest that a ListView is a good choice to display a

particular collection:

 The collection can contain a variable number of items to display, possibly a very large

number, showing more when the app runs on a larger display.

 It makes sense to organize and reorganize the items in various groups.

 Group headers help to clarify the common properties of the items in those groups, and

they can be used to navigate to a group-specific page.

 It makes sense to sort and/or filter the items according to different criteria.

 Different groupings of items and information about those groups suggest ways in

which semantic zoom would be a valuable user experience.

 The groups themselves are all similar in some way, meaning that they each refer to a

similar kind of thing. For example, letters, place names, and product categories are

similar; a news feed, a list of friends, and a calendar of holidays are not similar.

On the flip side, opposite factors suggest that a ListView is not the right choice:

 The collection contains a limited or fixed number of items, or it isn’t really a collection

of related items at all.

 It doesn’t make sense to reorganize the groupings or to filter or sort the items.

 You don’t want group headers at all.

 You don’t see how semantic zoom would apply.

 The groups are highly dissimilar—that is, it wouldn’t make sense for the groups to sit

side-by-side if the headers weren’t there.

Let me be clear that I’m not talking about design choices here—your designers can hand you any

sort of layout they want and it’s your job to implement it! What I’m speaking to is how you choose to

try doing that implementation, whether with right controls or just with HTML/CSS layout.

I say this because in working with the developers who created the very first WinRT apps for the

Windows Store, we frequently saw them trying to use ListView in situations where it just wasn’t needed.

An app’s huge page, for example, might combine a news feed, a list of friends, and a calendar. An item

details page might display a picture, a textual description, and a media gallery. In both cases, the page

contains a limited number of sections and the sections contain very different content, which is to say

196

that there isn’t a similarity of items across the groups. Because of this, using a ListView is more

complicated than just using a single pannable div with a CSS grid in which you can lay out whatever

sections you need.

Within those sections, of course, you might use ListView controls to display an item collection, but

for the overall page, a simple div is all you need. I’ve illustrated these choices in Figure 5-7 using an

image from the Navigation design for WinRT apps topic, since you’ll probably receive similar images

from your designers. Ignoring the navigation arrows, the hub and details pages typically use a div at

the root, whereas a section page is often a ListView. Within the hub and details pages there might be

some ListView controls, but where there is essentially fixed content (like a single item), the best choice

is a div.

Figure 5-7 Breaking down typical hub-section-detail page designs into div elements and ListView controls.

A clue that you’re going down the wrong path, by the way, is if you find yourself trying to combine

multiple collections of unrelated data into a single source, binding that source to a ListView, and

implementing a renderer to tease all the data apart again so that everything renders properly! All that

extra work could be avoided simply by using HTML/CSS layout.

Options, Selections, and Item Methods
In previous sections we’ve already seen some of the options you can use when creating a ListView,

options that correspond to the control’s properties that are accessible also from JavaScript. Let’s look

now at the complete set of properties, methods, and events, which I’ve organized into a few

groups—after all, those properties and methods form quite a collection in themselves! Since the details

for the individual properties are found on the WinJS.UI.ListView object reference page, what’s most

197

http://msdn.microsoft.com/en-us/library/windows/apps/hh761500
http://msdn.microsoft.com/en-us/library/windows/apps/br211837.aspx

useful here is to understand how the members of these groups relate:

 Addressing items The currentItem property gets or sets the item with the focus,

and the elementFromIndex and indexOfElement methods let you cross-reference

between an item index and the DOM element for that item. The latter could be useful if

you have other controls in your item template and need to determine the surrounding

item in an event handler.

 Item visibility The indexOfFirstVisible and indexOfLastVisible properties let

you know what indices are visible, or they can be used to scroll the ListView appropriate

for a given item. The ensureVisible method brings the specified item into view, if it’s

been loaded. There is also the scrollPosition property that contains the distance in

pixels between the first item in the list and the current viewable area. Though you can

set the scroll position of the ListView with this property, it’s reliable only if the control’s

loadingState (see “Loading state” group below) is ready, otherwise the ListView may

not yet know its actual dimensions. It’s thus recommended that you instead use

ensureVisible or indexOfFirstVisible to control scroll position.

 Item invocation The itemInvoked event, as we’ve seen, fires when an item is tapped,

unless the tapBehavior property is not set to none, in which case no invocation

happens. Other tapBehavior values from the WinJS.UI.TapBehavior enumeration will

always fire this event but determine how the item selection is affected by the tap. Do

note that you can override the selection behavior on a per-item basis using the

selectionchanging event and suppress the animation if needed. See the “Tap/Click

Behaviors” sidebar after this list.

 Item selection The selectionMode property contains a value from the WinJS.UI.-

SelectionMode enumeration, indicating single-, multi-, or no selection. At all times the

selection property contains a ListViewItems object whose methods let you

enumerate and manipulate the selected items (such as setting selected items through

its set method). Changes to the selection fire the selectionchanging and

selectionchanged events; with selectionchanging, its args.detail.newSelection

property contains the newly selected items. For more on this, refer to the HTML

ListView Customizing Interactivity sample.

 Swiping Related to item selection is the swipeBehavior property that contains a

value from the WinJS.UI.SwipeBehavior enumeration. “Swiping” is the top-down

touch gesture on an item to select it. If this is set to none, swiping has no effect on the

item and the gesture is bubbled up to the parent elements, allowing a vertically

oriented ListView or its surround page to pan. If this is set to select, the gesture is

processed by the item to select it.

 Data sources and templates We’ve already seen the groupDataSource,

groupHeaderTemplate, itemDataSource, and itemTemplate properties already. There

are two related properties, resetGroupHeader and resetItem, that contain functions

198

http://msdn.microsoft.com/en-us/library/windows/apps/hh701303.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229687.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229687.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211809.aspx
http://code.msdn.microsoft.com/windowsapps/ListView-selection-detail-95e06ade
http://code.msdn.microsoft.com/windowsapps/ListView-selection-detail-95e06ade
http://msdn.microsoft.com/en-us/library/windows/apps/hh701287.aspx

that the ListView will call when recycling elements. This is explained in “Template

Functions (Part 2): Promises, Promises!” section.

 Layout As we’ve also seen, the layout property (an object) describes how items are

arranged in the ListView, which we’ll talk about more in “Layouts and Cell Spanning”

below. We’ve also seen the forceLayout function that’s specifically used when a

display: none style is removed from a ListView and it needs to re-render itself.

 Loading behavior As explained in the “Optimizing ListView Performance” section

later on, this group determines how the ListView loads pages of items (which is why

ensureVisible doesn’t always work if a page hasn’t been loaded). When the

loadingBehavior property is set to "randomaccess" (the default), the ListView’s

scrollbar reflects the total number of items but only five total pages of items (to a

maximum of 1000) are kept in memory at any given time as the user pans around. (The

five pages are the current page, plus two buffer pages both ahead and behind.) The

other value, "incremental", is meant for loading some number of pages initially and

then loading additional pages when the user scrolls toward the end of the list (keeping

all items in memory thereafter). Incremental loading works with the

automaticallyLoadPages, pagesToLoad, and pagesToLoadThreshold properties, along

with the loadMorePages method, as we’ll see.

 Loading state The read-only loadingState property contains either "itemsLoading"

(the list is requesting items and headers from the data source), "viewportLoaded" (all

items and headers that are visible have been loaded), "itemsLoaded" (all remaining

nonvisible buffered items have been loaded), or "complete" (all items are loaded,

content in the templates is rendered, and animations have finished). Whenever this

property changes, which is basically whenever the ListView needs to update its layout

due to panning, the loadingStateChanged event fires.

 Miscellany The addEventListener, removeEventListener, and dispatchEvent

(methods) are the standard DOM methods for handling and raising events. These

can be used with any other event that the ListView supports, including

contentanimating that fires when the control is about to run an item entrance or

transition animation, allowing you to either prevent or delay those animations. The

zoomableView property contains the IZoomableView implementation as required by

semantic zoom (apps will never manipulate this property).

Sidebar: Tap/Click Behavior

When you tap or click an item in a ListView with the tapBehavior property set to something

other than none, there’s a little ~97% scaling animation to acknowledge the tap. If you have

some items in a list that can’t be invoked (like those in a particular group or ones that you show

as disabled because backing data isn’t yet available), they’ll still show the animation because the

tapBehavior setting applies to the whole control. To remove the animation for any specific item,

199

you can add the win-interactive class to its element within a renderer function, which is a way

of saying that the item internally handles tap/click events, even if it does nothing but eat them. If

at some later time the item becomes invocable, you can, of course, remove that class.

If you need to suppress selection for an item, add a handler for the ListVIew’s selection-

changing event and call its args.detail.preventTapBehavior method. This works for all

selection methods, including swipe, mouse click, and the Enter key.

Styling
Following the precedent of Chapter 4 and the earlier section on ListView, styling is best understood

visually as in Figure 5-8, where I’ve applied some garish CSS to some of the win-* styles so that they

stand out. I highly recommend you look at the Styling the ListView and its items topic in the

documentation, which details some additional styles that are not shown here.

Figure 5-8 Style classes as utilized by the ListView control.

A few notes about styling:

 Remember that Blend is your best friend here!

 As with styling the FlipView, a class like win-listview is most useful with styles like

margins and padding, since a property like its background color won’t actually show

through anywhere (unlike win-viewport and win-surface).

 win-viewport styles the nonscrolling background of the ListView and is rarely used,

perhaps for a nonscrolling background image. win-surface styles the scrolling

200

http://msdn.microsoft.com/en-us/library/windows/apps/hh850406.aspx

background area.

 win-container primarily exists for two things. One is to create space between items

using margin styles, and the other is to override the default background color, often

making its background transparent so that the win-surface or win-viewport

background shows through. Note that if you set a padding style here instead of margin,

you’ll create areas around what the user will perceive as the item that are still invoked

as the item. Not good. So always use margin to create space between items.

 Though win-item is listed as a style, it’s deprecated and may be removed in the future:

just style the item template directly.

 The documentation points out that styles like win-container and win-surface are

used by multiple WinJS controls. (FlipView uses a few of them.) If you want to override

styles for a ListView, be sure to scope your selectors them with other classes like

.win-listview or a particular control’s Id or class.

 The default ListView height is 400px, and the control does not automatically adjust itself

to its content. You’ll almost always want to override that style in CSS or set it from

JavaScript when you know the space that the ListView should occupy, as we’ll cover in

Chapter 6.

 Styles not shown in the figure but described on Styling the ListView and its items

include win-focusedoutline, win-selection, win-selected, win-selectionborder,

win-selectionbackground, and win-selectionhint. There is also the win-selection-

stylefilled class that you add to an item to use a filled selection style rather than the

default bordered style, as shown here:

Backdrops
There is another ListView visual that is a bit like styling but not affected by styling. This is called the

backdrop, an effect that’s turned on by default when you use the GridLayout. On low-end hardware,

especially low-power mobile devices, panning around quickly in a ListView can very easily outpace

the control’s ability to load and render items. To give the user a visual indication of what they’re

doing, the GridLayout displays a simple backdrop of item outlines based on the default item size

and pans that until such time as real items are rendered. As we’ll see in the next section, you can

disable this feature with the GridLayout’s disableBackdrop property and override its default gray

color with the backdropColor property.

201

http://msdn.microsoft.com/en-us/library/windows/apps/hh850406.aspx

Layouts and Cell Spanning
The ListView’s layout property, which you can set at any time, contains an object that’s used to

organize the list’s items. WinJS provides two prebuilt layouts: WinJS.UI.GridLayout and

WinJS.UI.ListLayout. The first, already described earlier in this chapter, provides a horizontally

panning two-dimensional layout that places items in columns (top to bottom) and then rows (left to

right). The second is a one-dimensional top-to-bottom layout, suitable for vertical lists (as in snapped

view).

Technically speaking, the layout property is an object in itself, containing some number of other

properties along with a type property. Typically, you see the syntax layout: { type: <layout> } in a

ListView’s data-win-options string, where <layout> is WinJS.UI.GridLayout or

WinJS.UI.ListLayout (technically, the name of a constructor function). In the declarative usage,

layout can also contain options that are specific to the type. For example, the following configures a

GridLayout with headers on the left and four rows:

layout: { type: WinJS.UI.GridLayout, groupHeaderPosition: 'left', maxRows: 4 }

If you create the layout object in JavaScript by using new to call the constructor directly (and

assigning it to the layout property), you can specify additional options with the constructor. This is

done in the Grid App project template’s initializeLayout method in groupedItems.js:

listView.layout = new ui.GridLayout({ groupHeaderPosition: "top" });

You can also set properties on the ListView’s layout object in JavaScript once it’s been created, if

you want to take that approach. Changing properties will generally update the layout.

In any case, each layout has its own unique options. For GridLayout, we have these:

 groupHeaderPosition controls the placement of headers in relation to their groups;

can be set to "left" or "top".

 maxRows controls the number of items the layout will place vertically before starting

another column.

 backdropColor provides for customizing the default backdrop color (see “Backdrops” in

the previous section), and disableBackdrops turns off the effect entirely.

 groupInfo identifies a function that returns an object whose properties indicate

whether cell spanning should be used and the size of the cell (see below). This is called

only once within a layout process.

 itemInfo identifies a function for use with cell spanning that returns an object of

properties describing the exact size for each item and whether the item should be

placed in a new column (see below).

The GridLayout also has a read-only property called horizontal that’s always true. As for the

ListLayout, its horizontal property is always false and has no other configurable properties.

202

Now, because the ListView’s layout property is just an object (or the name of a constructor for such

an object), can you create a custom layout function of your own? Yes, you can: create a class that

provides the same public methods as the built-in layouts, as described by the (currently under-

documented) WinJS.UI.Layout class. From there the layout object can provide whatever other options

(properties and methods) are applicable to it. This topic is somewhat beyond the scope of this chapter,

though I hope to cover it in an appendix, blog post, or other such content later on until such time as

official documentation exists.

Now before you start thinking that you might need a custom layout, the GridLayout provides for

something called cell spanning that allows you to create variable-sized items (not an option for

ListLayout). This is what its groupInfo and itemInfo properties are for, as demonstrated in Scenarios 4

and 5 of the HTML Listview Item Templates sample and shown in Figure 5-9.

Figure 5-9 The SDK’s ListView item templates sample showing multisize items through cell spanning.

The basic idea of cell spanning is to define a grid for the GridLayout based on the size of the

smallest item (including padding and margin styles). For best performance, make the grid as coarse as

possible, where every other element in the ListView is a multiple of that size.

You turn on cell spanning through the GridLayout’s groupInfo property. This is a function that

returns an object with three properties: enableCellSpanning, which should be set to true, and

cellWidth and cellHeight, which contain the pixel dimensions of your minimum cell (which, by the

way, is what the GridLayout’s backdrop feature will use for its effects in this case). In the sample (see

js/data.js), this function is named groupInfo like the layout’s property. I’ve given it a different name here

for clarity:

function cellSpanningInfo() {

 return {

 enableCellSpanning: true,

203

http://code.msdn.microsoft.com/windowsapps/ListView-item-templates-7d74826f

 cellWidth: 310,

 cellHeight: 80

 };

}

You then specify this function as part of the layout property in data-win-options:

layout: { type: WinJS.UI.GridLayout, groupInfo: cellSpanningInfo }

or you can set layout.groupInfo from JavaScript. In any case, once you’ve announced your use of cell

spanning, your item template should set each item’s style.width and style.height properties, plus

applicable padding values, to multiples of your cellWidth and cellHeight according to the following

formulae (which are two arrangements of the same formula):

templateSize = ((cellSize + margin) x multiplier) – margin

cellSize = ((templateSize + margin) / multiplier) - margin

In the sample, these styles are set by assigning each item one of three class names:

smallListIconTextItem, mediumListIconTextItem, and largeListIconTextItem, whose relevant

CSS is as follows (from scenario4.css and scenario5.css):

.smallListIconTextItem {

 width: 300px;

 height: 70px;

 padding: 5px;

}

.mediumListIconTextItem {

 width: 300px;

 height: 160px;

 padding: 5px;

}

.largeListIconTextItem {

 width: 300px;

 height: 250px;

 padding: 5px;

}

Since each of these classes has padding, their actual sizes from CSS are 310x80, 310x170, and

310x260. The margin to apply in the formula comes from the win-container style in the WinJS

stylesheet, which has a margin of 5px. Thus:

((80 + 10) * 1) – 10 = 80; minus 5px padding top and bottom = a height of 70px in CSS

((80 + 10) * 2) – 10 = 170; minus 5px padding = height of 160px

((80 + 10) * 3) – 10 = 260; minus 5px padding = height of 250px

The only difference between Scenario 4 and Scenario 5 is that the former assigns class names to the

items through a template function. The latter does it through a declarative template and data-binds

the class name to an item data field containing those values.

204

As for the itemInfo function, this is a way to optimize the performance of a ListView when using

cell spanning. Without assigning a function to this property, the GridLayout has to manually determine

the width and height of each item as it’s rendered, and this can get slow if you pan around quickly with

a large number of items. Since you probably already know item sizes yourself, you can return that

information through the itemInfo function. This function receives an item index and returns an object

with the item’s width and height properties. (We’ll see a working example in a bit.)

function itemInfo(itemIndex) {

 //determine values for itemWidth and itemHeight given itemIndex
 return {

 newColumn: false,

 itemWidth: itemWidth,

 itemHeight: itemHeight

 };

}

Clearly, this function will be called for every item in the list but only if cell spanning has been turned

on through the groupInfo function. Again, unless your list is relatively small, you’ll very much improve

performance by providing item dimensions through this function.

You probably also noticed that newColumn property in the return value. As you might guess, this

instructs the GridLayout to start a new column with this item, allowing you to control that particular

behavior. You can even use newColumn by itself, if you like, with a smallish list.

Now you might be asking: what happens if I set different sizes in my item template but don’t

actually announce cell spanning? Well, you’ll end up with overlapping (and rather confusing) items.

This is because the GridLayout takes the first item in a group as the basic measure for the rest of the

items (and the backdrop grid as well; it does not attempt to automatically size each item according to

content). Try this with Scenarios 4 or 5: remove the layout.groupInfo property from the ListView’s

data-win-options in scenario4.html or scenario5.html and restart the app, and you’ll see the medium

and large items bleeding into those that follow:

Then go into data.js, set the first item’s style in the myCellSpanningData array to be

largeListIconTextItem, and restart; the ListView then does layout with that as the basic item size:

205

Using the first item’s dimension like this underscores the fact that a ListView with cell spanning will

take more time to render because it must measure each item as it gets laid out, with or through the

itemInfo function. For this reason, cell spanning is probably best avoided for large lists.

Where all this gets a little more interesting, which the sample doesn’t show, is how the GridLayout

deals with items that vary in width. Its basic algorithm is still to lay out columns from top to bottom

and then left to right, but it will now infill empty spaces next to smaller items when larger ones create

those gaps. To demonstrate this, let’s modify the sample so that the smallest item is 155x80 (half the

original size), the medium item is 310x80, and the large item is 310x160. Here are the changes to make

that happen:

1. Undo any changes from the previous tests: in scenario4.html, add groupInfo back to

data-win-options, and in data.js, change the class in the first item of myCellSpanningData

back to smallListIconTextItem.

2. In data.js, change the cellWidth in groupInfo to 155 (half of 310) and leave cellHeight at 80.

For clarity, also insert an incrementing number at the start of each item’s text in

myCellSpanningData array.

3. In scenario4.css:

a. Change the width of smallListIconTextItem to 145px. Applying the formula, ((145+10) *

1) – 10 = 145. Height is 70px.

b. Change the width of mediumlListIconTextItem to 310px and the height to 70px.

c. Change the width of largelListIconTextItem to 310px and the height to 160px.

Applying the formula to the height, ((80+10) *2) – 10 = 170px.

d. Set the width style in the #listview rule to 800px and the height to 600px (to make

more space in which to see the layout).

I recommend making these changes in Blend where your edits are reflected more immediately than

running the app from Visual Studio. In any case, the results are shown in Figure 5-10 where the

numbers show us the order in which the items are laid out (and apologies for clipping the

text…experiments must make sacrifices at times!). A copy of the SDK sample with these modifications is

also given in the companion content for this chapter.

206

Figure 5-10 Modifying the SDK’s ListView item templates sample to show cell spanning more completely.

In the modified sample I’ve also included an itemInfo function in data.js, as you may have already

noticed. It returns the item dimensions according to the type specified for the item:

function itemInfo(index) {

 //getItem(index).data retrieves the array item from a WinJS.Binding.List

 var item = myCellSpanningData.getItem(index).data;

 var width, height;

 switch (item.type) {

 case "smallListIconTextItem":

 width = 145;

 height = 70;

 break;

 case "mediumListIconTextItem":

 width = 310;

 height = 70;

 break;

 case "largeListIconTextItem":

 width = 310;

 height = 160;

 break;

 }

 return {

 newColumn: false,

 itemWidth: width,

 itemHeight: height

 };

}

You can set a breakpoint in this function and verify that it’s being called for every item; you can also

207

see that it produces the same results. Now change the return value of newColumn as follows, to force a

column break before item #7 and #15 in Figure 5-10, because they oddly span columns:

newColumn: (index == 6 || index == 14), //Break on items 7 and 15 (index is 6 and 14)

The result of this change is shown in Figure 5-11.

Figure 5-11 Using new columns in cell spanning on items 7 and 15.

One last thing I noticed while playing with this sample is that if the item size in a style rule like

smallListIconTextItem ends up being smaller than the size of a child element, such as

.regularListIconTextItem (which includes margin and padding), the larger size wins in the layout. As

you experiment, you might also want to remove the default 5px margin that’s set for win-container.

This is what creates the space between the items in Figure 5-10 but has to be added into the

equations. The following rule will set that margin to 0px:

#listView > .win-horizontal .win-container {

 margin: 0px;

}

Optimizing ListView Performance

I’ve often told people that there’s so much you can do and learn about ListView that it could be a book

in itself! Indeed, it would have been easy for Microsoft to have just created a basic control that let you

create templated items and have left it at that. However, knowing that the ListView would be utterly

central to a large number of apps (perhaps the majority outside the gaming category), and expecting

that the ListView would be called upon to host thousands or even tens of thousands of items, a highly

skilled and passionate group of engineers has gone to great extremes to provide many levels of

sophistication that will help your apps perform their best.

208

One optimization is the ability to demand-load pages of items as determined by the ListView’s

loadingBehavior property, as described in the next two sections. The other optimization is to use

template functions to delay-load different parts of each item, such as images, as well as to defer

actions like animations until an item actually becomes visible, which is covered in the third section

below. In all cases, the whole point of these optimizations is to help the ListView display the most

important items or parts of items as quickly as possible, deferring the loading and rendering of other

items or less important item elements until they’re really needed.

I did want to point out that the Using ListView topic in the documentation contains even more

suggestions than I’m able to include here. (I do have other chapters to write!) I encourage you to study

that topic as well, and who knows—maybe you’ll be the one to write the complete ListView book!

Furthermore, additional guidance on appwide performance can be found on Performance best

practices forWinRT apps using JavaScript, which contains the Using ListView topic.

Random Access
If you’re like myself and others in my family, you probably have an ever-increasing stockpile of digital

photographs that make you glad that 1TB+ hard drives keep dropping in price. In other words, it’s not

uncommon for many consumers to have ready access to collections of tens of thousands of items that

they will at some point want to pan through in a ListView. But just imagine the overhead of trying to

load every thumbnails for every one of those items into memory to display in a list. On low-level

hardware, you’d probably be causing every suspended app to be quickly terminated, and the result will

probably be anything but “fast and fluid”! The user might end up waiting a really long time for the

control to become interactive and will certainly get tired of watching a progress ring!

With this in mind, the default loadingBehavior property for a ListView is set to "randomaccess". In

this mode, the ListView’s scrollbar will reflect the total extent of the list so that the user has some idea

of its size, but the ListView keeps a total of only five pages or screenfuls of items in memory at any

given time (with an overall limit of 1000 items). For most pages, this means the visible page (in the

viewport) plus two buffer pages ahead and behind. (If you’re viewing the first page, the buffer extends

four pages ahead; if you’re on the last page, the buffer extends four pages behind—you get the idea.)

Whenever the user pans to a location in the list, any pages that fall out of the viewport or buffer

zone are discarded (almost—we’ll come back to this in a moment), and loading of the new viewport

page and its buffer pages begins. Thus the ListView’s loadingState property will start again at

itemsLoading, then to viewportLoaded when the visible items are rendered, then itemsLoaded when

the buffered pages are loaded, and then complete when everything is done. Again, at any given time,

only five pages of items are loaded into memory.

Now when I said that previously loaded items get discarded when they move out of the

viewport/buffer range, what actually happens is that the items get recycled. One of the most expensive

parts of rendering an item is creating its DOM elements, so the ListView actually takes those elements,

moves them to a new place in the list, and fills them in with new content. This will become important

when we look at optimization in template functions shortly.

209

http://msdn.microsoft.com/en-us/library/windows/apps/Hh781224.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465194.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465194.aspx

Incremental Loading
Apart from potentially very large but known collections, other collections are, for all intents and

purposes, essentially unbounded, like a news feed that might have millions of items stretching back to

the Cenozoic Era (at least by Internet reckoning!). With such collections, you probably won’t know just

how many items there are at all; the best you can really do is just load another chunk when the user

wants them.

This is what the loadingBehavior of "incremental" is for. In this mode, the ListView’s scrollbar will

reflect only what’s loaded in the list, but if the user passes a particular threshold—for instance, they pan

to the end of the list—the ListView will ask the data source for more pages of items and add them to

the list, updating the scrollbar, of course. In this case, all of the loaded items remain loaded, providing

for very quick panning within the loaded list but with potentially more memory consumption than

random access.

The incremental loading behavior is demonstrated in Scenarios 2 and 3 of the ListView loading

behaviors sample. (Scenario 1 covers random access, but it’s nothing different than we’ve already seen.)

Incremental loading activates the following characteristics:

 The ListView’s pagesToLoad property indicates how many pages or screenfuls of items

get loaded at a time. The default value is 5.

 The automaticallyLoadPages property indicates whether the ListView should load new

pages automatically as you pan through the list. If true (the default), as demonstrated

in Scenario 2, as you pan toward the end of the list you’ll see the scrollbar change as

new pages are loaded. If false, as demonstrated in Scenario 3, new pages are not loaded

until you call the loadMorePages method directly.

 When automaticallyLoadPages is true, the pagesToLoadThreshold property indicates

how close the user can get to the current end of the list before new page loads are

triggered. The default value is 2.

 When new pages start to load (either automatically or in response to loadMorePages),

the ListView will start updating the loadingState property firing loadingstatechanged

events as described already.

Template Functions (Part 2): Promises, Promises!
What we just discussed with the ListView’s loading behavior options pertained to the incremental

loading of pages. It’s helpful now to combine this with incremental loading of items. For that, we need

to look at what’s sometimes referred to as the rendering pipeline as implemented in template functions.

When we first looked at template functions earlier (see “How Templates Really Work”), I noted that

they give us control over both how and when items are constructed and that such functions—again,

called renderers—are the means through which you can implement five progressive levels of

optimization for ListView (and FlipView, though this is less common). Just using a renderer, as we

210

http://code.msdn.microsoft.com/windowsapps/ListView-loading-behaviors-718a4673
http://code.msdn.microsoft.com/windowsapps/ListView-loading-behaviors-718a4673

already saw, is level 1; now we’re ready to see the other four levels. This is a fascinating subject,

because it shows the kind of sophistication that the ListView has implemented for us!

Our context for this discussion is the HTML ListView optimizing performance sample that

demonstrates all these levels and allows you to see their respective effects. Here’s an overview:

 A simple or basic renderer allows control over the rendering on a per-item basis.

 A placeholder renderer separates creation of the item element into two stages. The first

stage returns only those elements that define the shape of the item. This allows the

ListView to quickly do its overall layout before all the details are filled in, especially

when the data is coming from a potentially slow source. When item data is available,

the second stage is then invoked to copy that data into the item elements and even

creating additional elements therein.

 A recycling placeholder renderer adds the ability to reuse an existing chunk of DOM for

the item, which is much faster that having to create one from scratch. For this purpose,

the ListView, knowing that it will be frequently paged around, holds onto some number

of item elements when they go offscreen. In your renderer, then, you add a code path

to clean up a recycled element if one is given to you, and return that as your

placeholder.

 A multistage renderer extends the recycling renderer both to delay-load images and

other media until the item element is fully built up in the ListView and also to delay any

visibility-related actions, such as animations, until the item is actually on-screen.

 Finally, a multistage batching renderer adds the ability to add images and other media

as a batch, thereby rendering and possibly animating their entrance into the ListView as

a group such that the system’s GPU can be employed more efficiently.

With all of these renderers, you should strive to make them execute as fast as possible. Especially

minimize the use of DOM API calls, which includes setting individual properties. Use an innerHTML

string where you can to create elements rather than discrete calls, and minimize your use of

getElementById, querySelector, and other DOM-traversal calls by caching the elements you refer to

most often. This will make a big difference.

To visualize the effect of these improvements, the following graphic shows an example of how

typical ListView rendering typically happens:

The yellow bars indicate execution of the app’s JavaScript—that is, time spent inside the renderer.

The manila bars indicate the time spent in DOM layout, and aqua bars indicate actual rendering to the

211

http://code.msdn.microsoft.com/windowsapps/ListView-performance-39fb71f0

screen. As you can see, when elements are added one by one, there’s quite a bit of breakup in what

code is executing when, and the kicker here is that most display hardware refreshes only every 16

milliseconds. As a result, there’s lots of choppiness in the visual rendering.

After making improvements, the chart can look like the one below, where the app’s work is

combined in one block, thereby significantly reducing the DOM layout process (the manila):

As for all the other little bits in these graphics, they come from the performance tool called XPerf

that’s part of the Windows SDK (see sidebar), and I haven’t studied the details yet. What ultimately

matters is that we understand the steps you can take to achieve these ends—namely, the different

forms of renderers that you can employ as demonstrated in the sample.

Sidebar: XPerf and msWriteProfilerMark

The XPerf tool in the Windows SDK, which is documented on Windows Performance Analysis

Tools, can very much help you understand how your app really behaves on a particular system.

Among other things, it logs calls you make to msWriteProfilerMark, as you’ll find sprinkled

throughout the WinJS source code itself. For these to show up in xperf, however, you need to

start logging with this command:

xperf –start user –on PerfTrack+Microsoft-IE:0x1300

and end logging with this one:

xperf –stop user –d <trace_filename>.etl

Launching the .etl file you save will run the Windows Performance Analyzer and show a graph

of events. Right-click the graph, and then click “Summary Table”. In that table, expand

Microsoft-IE and then look for and expand the Mshtml_DOM_CustomSiteEvent node. The Field3

column should have the text you passed to msWriteProfilerMark, and the Time(s) column will

help you determine how long actions took.

As our baseline, here is a simple renderer:

function simpleRenderer(itemPromise) {

 return itemPromise.then(function (item) {

 var element = document.createElement("div");

 element.className = "itemTempl";

 element.innerHTML = "<img src='" + item.data.thumbnail +

 "' alt='Databound image' /><div class='content'>" + item.data.title + "</div>";

 return element;

 });

}

212

http://msdn.microsoft.com/en-us/performance/cc825801.aspx
http://msdn.microsoft.com/en-us/performance/cc825801.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd433074(v=VS.85).aspx

Again, this structure waits for the item data to become available, and it returns a promise for the

element that will be fulfilled at that time.

A placeholder renderer separates building the element into two stages. The return value is an object

that contains a minimal placeholder in the element property and a renderComplete promise that does

the rest of the work when necessary:

function placeholderRenderer(itemPromise) {

 // create a basic template for the item which doesn't depend on the data

 var element = document.createElement("div");

 element.className = "itemTempl";

 element.innerHTML = "<div class='content'>...</div>";

 // return the element as the placeholder, and a callback to update it when data is available

 return {

 element: element,

 // specifies a promise that will be completed when rendering is complete

 // itemPromise will complete when the data is available

 renderComplete: itemPromise.then(function (item) {

 // mutate the element to include the data

 element.querySelector(".content").innerText = item.data.title;

 element.insertAdjacentHTML("afterBegin", "<img src='" +

 item.data.thumbnail + "' alt='Databound image' />");

 })

 };

}

The element property, in short, defines the item’s shape and is returned immediately from the

renderer. This lets the ListView do its layout, after which it will fulfill the renderComplete promise. You

can see that renderComplete essentially contains the same sort of thing that a simple renderer returns,

minus the already created placeholder elements. (For another example, the added Scenario 8 of the

FlipView example in this chapter’s companion content has commented code that implemented this

approach.)

A recycling placeholder renderer now adds awareness of a second parameter called recycled that

the ListView (but not the FlipView) can provide to the function when its loadingBehavior is set to

"randomaccess". If recycled is given, you can just clean out the element, return it as the placeholder,

and then fill in the data values within the renderComplete promise as before. If it’s not provided (as

when the ListView is first created or when loadingBehavior is "incremental"), you’ll create the

element anew:

function recyclingPlaceholderRenderer(itemPromise, recycled) {

 var element, img, label;

 if (!recycled) {

 // create a basic template for the item which doesn't depend on the data

 element = document.createElement("div");

 element.className = "itemTempl";

 element.innerHTML = "<div

class='content'>...</div>";

 }

213

 else {

 // clean up the recycled element so that we can re-use it

 element = recycled;

 label = element.querySelector(".content");

 label.innerHTML = "...";

 img = element.querySelector("img");

 img.style.visibility = "hidden";

 }

 return {

 element: element,

 renderComplete: itemPromise.then(function (item) {

 // mutate the element to include the data

 if (!label) {

 label = element.querySelector(".content");

 img = element.querySelector("img");

 }

 label.innerText = item.data.title;

 img.src = item.data.thumbnail;

 img.style.visibility = "visible";

 })

 };

}

In renderComplete, be sure to check for the existence of elements that you don’t create for a new

placeholder, such as label, and create them here if needed.

If you’d like to clean out recycled items, you can also provide a function to the ListView’s resetItem

property that would contain the same code as shown above for that case. The same is true for the

resetGroupHeader property, because you can use template functions for group headers as well as

items. We haven’t spoken of these as much because group headers are far fewer and don’t typically

have the same performance implications. Nevertheless, the capability is there.

Next we have the multistage renderer, which extends the recycling placeholder renderer to

delay-load images and other media until the rest of the item is wholly present in the DOM, and to

further delay effects like animations until the item is truly on-screen.

The hooks for this are three methods called ready, loadImage, and isOnScreen that are attached to

the item provided by the itemPromise. The following code shows how these are used:

 renderComplete: itemPromise.then(function (item) {

 // mutate the element to update only the title

 if (!label) { label = element.querySelector(".content"); }

 label.innerText = item.data.title;

 // use the item.ready promise to delay the more expensive work

 return item.ready;

 // use the ability to chain promises, to enable work to be cancelled

 }).then(function (item) {

 //use the image loader to queue the loading of the image

 if (!img) { img = element.querySelector("img"); }

 return item.loadImage(item.data.thumbnail, img).then(function () {

 //once loaded check if the item is visible

214

 return item.isOnScreen();

 });

 }).then(function (onscreen) {

 if (!onscreen) {

 //if the item is not visible, then don't animate its opacity

 img.style.opacity = 1;

 } else {

 //if the item is visible then animate the opacity of the image

 WinJS.UI.Animation.fadeIn(img);

 }

 })

I warned you that there would be promises aplenty in these performance optimizations! But all we

have here is the basic structure of chained promises. The first async operation in the renderer updates

simple parts of the item element, such as text. It then returns the promise in item.ready. When that

promise is fulfilled—or, more accurately, if that promise is fulfilled—you can use the item’s async

loadImage method to kick off an image download, returning the item.isOnScreen promise from that

completed handler. When and if that isOnScreen promise is fulfilled, you can perform those

operations that are relevant only to a visible item.

I emphasize the if part of all this because it’s very likely that the user will be panning around within

the ListView while all this is happening. Having all these promises chained together makes it possible

for the ListView to cancel the async operations any time these items are scrolled of view and off any

buffered pages. Suffice it to say that the ListView control has gone through a lot of performance

testing!

Which brings us to the final multistage batching renderer, which combines the insertion of images

in the DOM to minimize layout and repaint work. In the sample, this uses a function called

createBatch that utilizes WinJS.Promise.timeout method with a 64-millisecond period to combine

the image-loading promises of the multistage renderer. Honestly, you’ll have to trust me on this one,

because you really have to be an expert in promises to understand how it works!

//During initialization (outside the renderer)

thumbnailBatch = createBatch();

//Within the renderComplete chain

//...

 }).then(function () {

 return item.loadImage(item.data.thumbnail);

 }).then(thumbnailBatch()

).then(function (newimg) {

 img = newimg;

 element.insertBefore(img, element.firstElementChild);

 return item.isOnScreen();

 }).then(function (onscreen) {

//...

Did I warn you about there being promises in your future? Well, fortunately, we’ve now exhausted

215

the subject of template functions, but it’s time well spent because optimizing ListView performance, as

I said earlier, will greatly improve consumer perception of apps that use this control.

What We’ve Just Learned

 In-memory collection data is managed through WinJS.Binding.List, which integrates

nicely with collection controls like FlipView and ListView. In-memory collections can

come from sources like WinJS.xhr and data loaded from files.

 The WinJS.UI.FlipView control displays one item at a time; WinJS.UI.ListView

displays multiple items according to a specific layout.

 Central to both controls is the idea that there is a data source and an item template

used to render each item in that source. Templates can be either declarative or

procedural.

 ListView works with the added notion of layout. WinJS provides two built-in layouts.

GridLayout is a two-dimensional, horizontally panning list; ListLayout is for a

one-dimensional vertically panning list. It is possible to implement custom layouts, but

that is beyond the scope of this book at present.

 ListView also provides the capability to display items in groups; WinJS.BindingList

provides methods to created grouped, sorted, and filtered projections of items from a

data source.

 The Semantic Zoom control (WinJS.UI.SemanticZoom) provides an interface through

which you can switch between two different views of a data source, a zoomed-in

(details) view and a zoomed-out (summary) view. The two views can be very different in

presentation but should display related data. The IZoomableView interface is required

on each of the views so that the Semantic Zoom control can switch between them and

scroll to the correct item.

 WinJS also provides a StorageDataSource to create a collection over items from the file

system.

 It is also possible to implement custom data sources, as shown by samples in the

Windows SDK.

 Procedural templates are implemented as template function, or renderers. These

functions can implement progressive levels of optimization for delay-loading images

and adding items to the DOM in batches.

 Both FlipView and ListView controls provide a number of options and styling

capabilities. ListView also provides for item selection and different selection behaviors.

216

 The ListView control provides built-in support for optimizing random access of large

data sources, as well as incremental access of effectively unbounded data sources.

 The ListView control supports the notion of cell spanning in its GridLayout to support

items of variable size, which should all be multiples of a basic cell size.

 Template functions used for item rendering in a ListView provides extensive

opportunities for loading and rendering optimization, thereby helping the ListView to

perform its best.

217

Chapter 6

Layout

Compared to other members of my family, I seem to need the least amount of sleep and am often up

late at night or up before dawn. To avoid waking the others, I generally avoid turning on lights and just

move about in the darkness (and here in the rural Sierra Nevada foothills, it can get really dark!). Yet

because I know the layout of the house and the furniture, I don’t need to see much. I only need a few

reference points like a door frame, a corner on the walls, or the edge of the bed to know exactly where

I am. What’s more, my body has developed a muscle memory for where doorknobs are located, how

many stairs there are, how many steps it takes to get around the bed, and so on. It’s really helped me

understand how visually impaired people “see” their own world.

If you observe your own movements in your home and your workplace—probably when the spaces

are lit!—you’ll probably find that you move in fairly regular patterns. This is actually one of the most

important considerations in home design: a skilled architect looks carefully at how people in the home

might move between primarily spaces like the kitchen, dining room, and living room, and even within a

single workspace like the kitchen. Then they design the home’s layout so that the most common

patterns of movement are easy and free from obstructions. If you’ve ever lived in a home where it

wasn’t designed this way, you can very much appreciate what I’m talking about!

The two key points here are these: first, good layout makes a huge difference in the usability of any

space, and second, human beings quickly form habits around how they move about within a space,

habits that hopefully make their movement more efficient and productive.

Good app design clearly follows the same principles, which is exactly why Microsoft recommends

following consistent patterns with your apps, as described on Designing UX for apps and Design

guidance for WinRT apps. Those recommendations are not in any way whimsical or haphazard: they

are the result of many years of research and investigation into what would really work best for apps

and for Windows 8 as a whole. The placement of the charms, for instance, as well as commands on an

app bar (as we’ll see in Chapter 7, Commanding UI”), arise from the reality of human anatomy, namely

how far we can move our thumbs around the edges of the screen when holding a tablet device.

With page layout, in particular, the recommendations on Understanding the Windows 8

silhouette—about where headers and body content are ideally placed, the spacing between items, and

so forth—can seem rather limiting, if not draconian. The silhouette, however, is meant to be a good

starting point but not a hard-and-fast rule. What’s most important is that the shape of an app’s layout

helps users develop a visual muscle memory that can be applied across many apps. Research showed

that users will actually develop such habits very quickly, even within a matter of minutes, but of course

those habits are not exact to specific pixels! In other words, the silhouette represents a general shape

that helps users immediately understand how an app works and where to go for what functions, just

like you can easily recognize the letter “S” in many different fonts. This is very efficient and productive.

218

http://msdn.microsoft.com/en-us/library/windows/apps/hh779072.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770552.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770552.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx

On the other hand, when presented with an app that used a completely different layout (or worse, a

layout that was similar to the silhouette but behaved differently), users must expend much more

energy just figuring out where to look and where to tap, just as I would have to be much more careful

late at night if you moved all my furniture around!

The bottom line is that there are very good reasons behind all the WinRT app design

recommendations, layout included. As I’ve said before, if you’re fulfilling the designer role for your app,

study the guidelines referred to above. If someone else is fulfilling that role, make sure they study the

guidelines! Either way, we’ll be reviewing the key principles in the first section of this chapter.

After that, our focus will be on how we implement layout designs, not creating the designs

themselves. (While I apparently got the mix of my parent’s genes that bestowed an aptitude for

technical communication, my brother got the most of the genes for artistry!) For example, how does an

app respond to view state changes to show the correct page design (for full-screen landscape, filled,

snapped, and portrait)? How does the app handle varying display sizes and varying pixel densities?

We’ll also spend a little time with the CSS grid and a few other CSS layout features like flexbox and

multicolumn text. Generally speaking, these are all CSS standards, so I expect that you already know

quite a bit about them or can find full documentation elsewhere.33 We’ll thus cover the basics only

briefly, spending more time understanding how these features are best applied within an app and

those aspects that are unique to the Windows 8 environment (such as what are called snap points on a

pannable/scrollable div).

I’ll remind you again that there still other UI elements like the app bar and flyouts that don’t

participate in layout at all; I’ll cover these in other chapters. There are also auxiliary app pages that

service contracts (such as Search and Settings) and exist outside your main navigation flow. These will

employ the same layout principles covered in this chapter, but how and when they appear will also be

covered later.

Principles of WinRT app Layout

Layout is truly one of the most important considerations in WinRT app design. The principle of

“content before chrome” means that most of what you display on any given app page is content, with

little in the way of commanding surfaces, persistent navigation tabs, and passive graphical elements

like separators, blurs, and gradients that don’t in themselves mean anything. Another way of putting

this is that content itself should be interactive rather than a passive element that is acted upon when

the user invokes some other command. Semantic zoom is a good example of such interactive

content—instead of needing buttons or menus elsewhere in the app to switch between views, the

33 The specifications can be found on http://www.w3c.org; specifically start with

http://www.w3.org/standards/webdesign/htmlcss for both. I also highly recommend the well-designed and curated

resources from Smashing Magazine for learning the nuances of CSS, which I must admit still seems like voodoo to me at

times.

219

http://www.w3c.org/
http://www.w3.org/standards/webdesign/htmlcss
http://www.smashingmagazine.com/

capability is inherent in the control itself, with the small zoom button appearing only when needed and

only for mouse users. Other app commands, for the most part, are similarly placed on UI surfaces that

appear when needed through app bars and other flyouts, as we’ll see in Chapter 7.

In short, “content before chrome” means helping the user be immersed in the experience of the

content rather than distracted by nonessentials. In WinRT app design, then, emphasis is given to the

space around and between content, which serves to organize and group content without the need for

lines and boxes. These essentially transparent “space frames” help consumer’s eyes focus on the

content that really matters. WinRT app design also uses typography (font size, weight, color, etc.) to

convey a sense of structure, hierarchy, and relative importance of different content. That is, since the

text on a page is already content, why not use its characteristics—the typography—to communicate

what used to be done with extraneous chrome? (As with the layout silhouette, the general use of the

Segoe UI font within WinRT app design is not a hard-and-fast requirement, but a starting point. Having

a consistent type ramp for different headings is more important than the font.)

As an example, Figure 6-1 shows a typical desktop or web application design for an RSS reader.

Notice the persistent chrome along the top and bottom: search commands, navigation tabs, navigation

controls, and so forth. This takes up perhaps 20% of the screen space. In what remains, nearly

two-thirds is taken up by organizational elements, leaving 20-25% of the screen space for the content

we actually care about, which is the article.

Figure 6-2 shows a WinRT app design for the same content. Notice how all the ancillary commands

have been moved offscreen. Search would be accomplished through the Search charm; Settings

through the Settings charm; adding feeds, refresh, and navigation through commands on to the app

bar; and switching views through semantic zoom. Typography is used to convey the hierarchy instead

of a folder control, which then leaves the bulk of the display—nearly 75%—for the content. As a result,

we can see much more of that content than before, which creates a much more immersive and

engaging experience, don’t you think?

220

Figure 6-1 A typical desktop or web application design that emphasizes chrome at the expense of content.

Figure 6-2 The same app as Figure 6-1 reimagined with WinRT app design, where most of the chrome has

disappeared, leaving much more space for content.

Even where typography is concerned, WinRT app design encourages the use of distinct font sizes,

called the typographic ramp, to establish a sense of hierarchy. The default WinJS

stylesheets—ui-light.css and ui-dark.css—provide four fixed sizes where each level is proportionally

larger than the previous (42pt = 80px, 20pt = 40px, etc.), as shown in Figure 6-3. These proportions

allow users to easily establish an understanding of content structure with just a glance. Again, it’s a

matter of encouraging habit and muscle memory, and Microsoft’s research has shown that beyond this

size granularity, users are generally unable to differentiate where a piece of content fits in a hierarchy.

221

Figure 6-3 The typographic ramp of WinRT app design, shown in both the ui-dark.css (left) and ui-light.css (right)

stylesheets.

Within the body of content, then, WinRT app design encourages these layout principles:

 Let content flow from edge to edge.

 Keep ergonomics in mind: pan along the long edge of the view (primarily horizontal in

landscape views, vertical in snapped view and possibly portrait).

 Pan on a single axis only to create a sense of stability and to support swiping to select

(as with the ListView controls).

 Create visual alignment, structure, and clarity with the WinRT app silhouette, aligning

elements on a grid for consistency. Refer again to Understanding the Windows 8

silhouette. This shape is what allows a consumer’s eyes to recognize something as a

WinRT app without having to think about it, which provides a feeling of familiarity and

confidence.

As I’ve mentioned before, the project templates in Visual Studio and Blend have these principles

baked right in and thus provide a convenient starting point for apps. Even if you start with the Blank

App template, the others like the Grid App will serve as a reference point. This is exactly what we did

with the Here My Am! app in Chapter 2, “Quickstart.”

The other important guiding principle that’s relevant to layout is “snap and scale beautifully.” This

means making sure you design every page in your app to handle all four view states and to be

appropriately adaptive across different display resolutions and pixel densities. We’ll look at this subject

in the “View States and the Many Faces of Your Display” section below. First, however, let’s look at a

little piece of core layout code.

222

http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx

Quickstart: Pannable Sections and Snap Points

In Chapter 5, “Collections and Collection Controls,” we spent a little time looking at when a ListView

control was the right choice and when it wasn’t. One of the primary cases where developers have

inappropriately used a ListView is to implement a home or hub page that contains a variety of distinct

content groups arranged in columns, as shown in Figure 6-4 and explained on Navigation design for

WinRT apps. At first glance this might look like a ListView, but because the data it’s representing really

isn’t a collection and is just a layout of fixed content, it makes sense to use tried-and-true HTML and

CSS for the job!

Figure 6-4 The layout of a typical home or hub page of a WinRT app with a fixed header (1), a horizontally

pannable section (2), and content sections or categories (3).

I point this out because with all the great controls that WinJS provides, it’s easy to forget that

everything you know about HTML and CSS still applies in WinRT apps. After all, those controls are in

themselves just blocks of HTML and CSS with some additional methods, properties, and events.

Laying Out the Hub
Let’s see how we’d use plain HTML and CSS to implement the pannable section of the hub page in

Figure 6-4. Referring first to Understanding the Windows 8 silhouette, we know that the padding

between groups should be four units of 20px each, or 80px. Most of the groups themselves should be

square, except for the second one which is only half the width. On a baseline 1366x768 display, the

height of each section would be 768px minus 128px (for the header) minus the minimum 50px on the

bottom, which leaves 590px (if we added group headings for each section, we’d subtract another

40px). So a square group on the baseline display would be 590px wide (we’d set the actual height to

100% of its containing grid cell). The total width of the section will then be (590 * 4 full-size sections) +

(295 * 1 half-width section) + (80 * 4 for the separator gaps). This equals 2975px. To this we’ll add

border columns of 120px on the left (according to the silhouette) and 180px on the right, for a total of

.

To create a section with exactly this layout, we can use a CSS grid within a block element. To

demonstrate this, run Blend and create a new project with the Nav App template (so we just get a basic

223

http://msdn.microsoft.com/en-us/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx

page with the silhouette and not all the secondary pages). Within the the section element of

pages/home/home.html, we create another div element and give is a class of hubSections:

<section aria-label="Main content" role="main">

 <div class="hubSections">

 </div>

</section>

Then in home.css we add the following style rules. We give overflow-x: auto to the section

element, then lay out our grid in the hubSections div, using added columns on the left and right for

spacing (removing the margin-left: 120px from the section and adding it as the first column in the

div):

.homepage section[role=main] {

 overflow-x: auto;

}

.homepage .hubSections {

 width: 2975px;

 height: 100%;

 display: -ms-grid;

 -ms-grid-rows: 1fr 50px;

 -ms-grid-columns: 120px 2fr 80px 1fr 80px 2fr 80px 2fr 80px 2fr 80px;

}

With just these styles we can already see the hub page taking shape in Blend by zooming out in the

artboard:

Now let’s create the individual sections, each one starting as a div that we add in home.html:

<section aria-label="Main content" role="main">

 <div class="hubSections">

 <div class="hubSection1"></div>

 <div class="hubSection2"></div>

 <div class="hubSection3"></div>

 <div class="hubSection4"></div>

 <div class="hubSection5"></div>

 </div>

</section>

224

and style them into their appropriate grid cells with 100% width and height. I’m showing hubSection1

here as the others are the same with just a different column number (4, 6, 8, and 10, respectively):

.homepage .hubSection1 {

 -ms-grid-row: 1;

 -ms-grid-column: 2; /* 4 for hubSection2, 6 for hubSection3, etc. */

 width: 100%;

 height: 100%;

}

All of this is implemented in the HubPage example included with this chapter.

Laying Out the Sections
Now we can look at the contents of each section. Depending on what you want to display and how

you want those sections to interact, you can again just use layout (CSS grids or perhaps flexbox) or use

a control like ListView. hubSection3 and hubSection5 have gaps at the end, so they might be ListView

controls with variable items. Note that if we created lists with more than 9 or 6 items, respectively, we’d

want to adjust the column size in the overall grid and make the section element width larger, but let’s

assume the design calls for a maximum of 9 and 6 items in those sections.

Let’s say that we want each section to be interactive, where tapping an item would navigate to a

details page. (Not shown in this example are group headers to navigate to a group page.) We’ll just

then use a ListView in each, where each ListView has a separate data source. For hubSection1 we’ll need

to use cell spanning, but the rest of the groups can just use regular template items. The key

consideration with all of these is to style the items so that they fit nicely into the basic dimensions we’re

using. And referring again back to the silhouette, the spacing between image items should be 10px

and the spacing between columns of mixed content (hubSection4 and hubSection5) should be 40px

(which can be set with appropriate CSS margins).

Snap Points
If you run the HubPage example and pan around a bit using inertial touch gestures (that is, those that

continue panning after you’ve released your finger, explained more in Chapter 9, “Input and Sensors”),

you’ll notice that panning can stop in any position along the way. You or your designers might like this,

but it also makes sense in many scenarios to automatically stop on a section or group boundary. This

can be accomplished for touch interactions using CSS styles for snap points as described in the

following table. Documentation for these (and some others) can be found on CSS reference for Touch:

Zooming and Panning.

Style Description Syntax

-ms-scroll-snap-points-x Defines snap points along the x-axis snapInterval(start<length>, step<length>)

|

snapList(list<lengths>)

225

http://msdn.microsoft.com/en-us/library/windows/apps/hh453816.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh453816.aspx

-ms-scroll-snap-points-y Defines snap points along the y-axis snapInterval(start<length>, step<length>)

|

snapList(list<lengths>)

-ms-scroll-snap-x Shorthand to combine -ms-scroll-snap-type and
-ms-scroll-snap-points-x

-ms-scroll-snap-type
-ms-scroll-snap-points-x

-ms-scroll-snap-y Shorthand to combine -ms-scroll-snap-type and
-ms-scroll-snap-points-y

-ms-scroll-snap-type
-ms-scroll-snap-points-y

-ms-scroll-snap-type Defines what type of snap points should be used for the

element: none turns off snap points, mandatory always adjusts

panning to land on a snap-point (which includes ending inertial

panning), and proximity changes the panning only if a

panning motion naturally ends “close enough” to a snap point.

Using mandatory, then, will enforce a

one-section/item-at-a-time panning behavior, whereas

proximity would pan past interim snap points if enough

inertia is applied. Note also that dragging with a finger (not

using an inertia gesture) will allow the user to pan directly past

snap points.

none | proximity | mandatory

In the table, <length> is a floating-point number, followed by an absolute units designator (cm, mm,

in, pt, or pc) or a relative units designator (em, ex, or px).

To add snap points for each of our hub sections, then, we only need to add these styles:

.homepage section[role=main] {

 -ms-scroll-snap-type: mandatory;

 -ms-scroll-snap-points-x: snapList(590px, 965px, 1635px, 2305px, 2975px);

}

Now you’ll find that panning around stops nicely (with animations) on the section boundaries. Do

note that for a hub page like this, proximity snapping is usually more appropriate. Mandatory snap

points are intended more for items that can’t be interacted with or consumed without seeing their

entirety, such as flipping between pictures, articles, and so on.

For more on this topic, including some of the other -ms-scroll-* and -ms-content-zoom-* styles,

such as scroll rails, refer to the Input: Pan/scroll and zoom sample in the Windows SDK. Do note also

that snap points are not presently supported on the ListView control.

Also be clear that snap points are a touch-only feature; if you want to provide the same kind of

behavior with mouse and/or keyboard input, you’ll need to do such work manually along the lines of

how the FlipView control handles transition between items.

The Many Faces of Your Display

If there’s one certainty about layout for a WinRT app, it’s that its display space will likely change over

226

http://code.msdn.microsoft.com/windowsapps/Scrolling-panning-and-47d70d4c

the lifetime of an app and change frequently. For one, auto-rotation—especially on tablet and slate

devices—makes it very quick and simple to switch between landscape and portrait orientations (unlike

having to configure a display driver). Second, a device may be connected to an external display,

meaning that apps need to adjust themselves to different resolutions on the fly and possibly also

different pixel densities. Third, users have the ability in landscape mode to “snap” apps to the left or

right side of the screen, where the snapped app is shown in a 320px wide area and another in the

“filled” area that occupies the remainder of the display. This is accomplished using touch or mouse

gestures, or using the Windows+. (period) and Windows+> (shift+period) keystrokes. (Snapped view

requires a display that’s at least 1366x768; otherwise it’s disabled.)

You definitely want to test your app with all of these variances: view states, display sizes, and pixel

densities. View states can be tested directly on any given machine, but for the latter two, the Visual

Studio simulator and the Device tab of Blend let you simulate different conditions. Our question now is

how an app handles them.

View States
We already got an introduction to the four view states in Chapter 1, “The Life Story of a WinRT app,”

specifically with Figure 1-6. Let’s now add the next level of precision as described in the following table,

which includes an image of the space occupied by the app, a description of the view state, and the

identifiers for that state as found in both WinRT (in the

Windows.UI.ViewManagement.ApplicationViewState enumeration) and the -ms-view-state media

feature for CSS media queries:

Space Occupied by the App (Blue) Details

App is in landscape mode occupying the entire screen.

WinRT: fullScreenLandscape

-ms-view-state: fullscreen-landscape

App is occupying either left or right side of a landscape screen, in an

area that is always 320 pixels wide. This means you do not need to

design for all possible sizes between snapped, filled (see below), and

full-screen states.

WinRT: snapped

-ms-view-state: snapped

227

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.viewmanagement.applicationviewstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465826.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465826.aspx

WinRT: filled

-ms-view-state: filled

App is occupying the area of the screen next to a snapped app. The

width will be the screen size minus 320px minus 22px for the splitter.

WinRT: fullScreenPortrait

-ms-view-state: fullscreen-portrait

App is in portrait mode

Remember again that every page of your app needs to be prepared for all four view states (with some

exceptions as described in the sidebar below, “Preferred Orientation and Locking Orientation”). View

states are always under the user’s control, so any page can be placed into any view state at any time,

even on startup (see note below). Repeat this like a mantra, because many designers and developers

forget this fact!

Note It’s possible that your app might be launched directly into snap view, as through a user gesture

that pulls the app from the left edge of the screen to a snap state. So be prepared for this possibility.

Remember also that any extended splash screen in your app is a page that is also subject to view

states. In fact, it’s highly likely that a user will snap an app that’s taking a while to load! At the same

time, you cannot programmatically control your app’s view state on activation, so it never needs to be

saved or restored as part of session state.

An app’s design should thus include all view states for each page, just like we did with the Here My

Am! wireframes in Chapter 2. At the same time, handling view states for every page this does not mean

four distinct implementations of the app. View states are just that: they are different views of the same

page content as described on Guidelines for snapped and fill views. That is, switching between view

states always maintains the state of the app and the page—it never changes modes or navigates to

another page. The only exception to this rule is that if an app can’t reasonably operate in snap state

(like a game that needs a certain amount of screen space to be playable), it can display a message to

that effect along with instructions to “Tap here to resume,” which reflects the user’s goal in such a

gesture. In response to such a tap, the app can call Windows.-

228

http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.viewmanagement.applicationview.aspx

UI.ViewManagement.ApplicationView.tryUnsnap, as demonstrated in the Snap sample.34 Don’t use

this as an excuse to cut corners, however; try as much as possible to keep the app functional in the

snapped state.

On the flip side, some apps should think about what to do with extra vertical space. A widescreen

video in the snapped state will occupy only a small portion of that space, leaving room for, say,

additional information about the video, recommendations, playlists, and so on, that wouldn’t normally

be available when running full screen. In this way, users will find added value in switching to the

snapped state.

Sidebar: Preferred Orientation and Locking Orientation

View states aside, it’s appropriate for some apps to start in a specific orientation and/or to lock

the orientation, effectively ignoring portrait/landscape changes. A movie player, for instance, will

generally want to stay in landscape mode, meaning that the fullscreen-landscape and

fullscreen-portrait modes are identical—then you can watch videos while laying sideways with a

tablet propped up on a chair!

To be clear, the app must still honor the three landscape view states: fullscreen-landscape,

filled, and snapped. Preferred orientation is specifically about portrait vs. landscape, and this

affects the orientation of your splash screen and other pages in your app. It also enables

automatic orientation switching when you switch between your app and others that don’t have

the same preference.

To tell Windows about your preferences, check the appropriate Supported Orientation boxes

in the Application UI tab of the manifest designer:

The many details about how all this works are found on the InitialRotationPreference

page in the documentation. It will also tell you about the

Windows.Graphics.Display.DisplayProperties.autoRotationPreferences and

currentOrientation properties to programmatically control orientation behaviors. For

demonstrations, refer to the Device auto rotation preferences sample in the Windows SDK.

34 tryUnsnap is the only programmatic API that can affect view states. View states are otherwise always user-initiated, and

there are no APIs to set a view state and no way to specify a view state on startup.

229

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.viewmanagement.applicationview.aspx
http://code.msdn.microsoft.com/windowsapps/Snap-Sample-2dc21ee3
http://msdn.microsoft.com/en-us/library/windows/apps/Hh700342.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/Hh700342.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.display.displayproperties.autorotationpreferences.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.display.displayproperties.currentorientation.aspx
http://code.msdn.microsoft.com/windowsapps/Auto-Rotation-Preferences-87ae2902

Handling View States

As I just mentioned, handling the different view states doesn’t mean changing the mode of an app nor

does it mean reimplementing a page. Generally speaking, you should try to have feature parity across

the states, but in cases like snapped view, especially, the reduced screen real estate will necessitate

simplifying the content.

It’s best to think about view states simply in terms of the visibility of elements, the size of elements,

and their layout on the page. In this way, most of what you need to do can be achieved through CSS

media queries using the -ms-view-state feature. We saw this again in the Here My Am! app of

Chapter 2. The Grid App project template also demonstrates this. Here’s how those media queries

appear in CSS:

@media screen and (-ms-view-state: fullscreen-landscape) {

 /* ... */

}

@media screen and (-ms-view-state: filled) {

 /* ... */

}

@media screen and (-ms-view-state: snapped) {

 /* ... */

}

@media screen and (-ms-view-state: fullscreen-portrait) {

 /* ... */

}

/* Syntax for combining media queries (comma-separated) */

@media screen and (-ms-view-state: fullscreen-landscape),

screen and (-ms-view-state: fullscreen-portrait), screen and (-ms-view-state: filled) {

 /* ... */

}

It’s also perfectly reasonable to add other clauses to these queries, such as and (min-width:

"1600px"), as you might be making various other adjustments based on screen sizes.

For WinRT apps, use the view state features in media queries instead of the CSS orientation states

(landscape and portrait), which are simply derived from the relative width and height of the display

and don’t distinguish states like snapped. In other words, the Windows view states are more specific to

the platform and reflect states that the standard CSS does not, helping your app understand not only

its available real estate but also the mode in which it’s running.35

For example, according to the standard CSS algorithm, both the fullscreen-portrait and

35 That said, view states are not reported to pages loaded into a web context iframe. Such pages can use the standard CSS

media queries to infer the view state, or the surrounding local context page can pass the view state to the iframe

through postMessage.

230

snapped states will appear as orientation: portrait because the aspect ratio is more vertical than

horizontal. However, snapped view implies a different user intent than fullscreen-portrait: in

snapped view you want to show the most essential parts of an app rather than trying to replicate your

portrait layout in a 320-pixels-wide space.

The general practice is to place all your full-screen landscape rules at the top of your CSS file and

then make specific adjustments within the specific media queries. We did exactly this with Here My

Am! in Chapter 2, where the default styles worked for fullscreen-landscape and filled as-is, so we

needed specific rules only for snapped and fullscreen-portrait.

Tip When styling your app in Blend, there’s a visual affordance in the Style Rules pane that lets you

control the exact insertion point of any new CSS styles in the given stylesheet. With this—the orange

line shown in the graphic below and shown in Video 2-1 of the companion content—you can indicate

where to insert styles for specific media queries and within that media query:

In a few cases, handling media queries in CSS alone won’t be sufficient. When the primary content

display on a page is a horizontally panning ListView with GridLayout, you typically switch that control

over to ListLayout in snapped view. You might also, as suggested on Guidelines for snapped and fill

views, change a list of buttons to a single drop-down select element to offer the same functionality

through a more compact UI.

For these purposes you can employ the standard Media Query Listener API in JavaScript. This

interface (part of the W3C CSSOM View Module, see http://dev.w3.org/csswg/cssom-view/) allows you

to add handlers for media query state changes. To listen for the snapped state, for instance, you can

use code like this:

var mql = window.matchMedia("(-ms-view-state: snapped)");

231

http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://dev.w3.org/csswg/cssom-view/

mql.addListener(styleForSnapped);

function styleForSnapped() {

 if (mql.matches) {

 //...

 }

}

// Set up listeners for other view states: full-screen, fill, and device-portrait

// or send all media queries to the same handler and check the current state therein.

You can see that the media query strings you pass to window.matchMedia are the same as used in

CSS directly, and in the handler you can, of course, perform whatever actions you need from JavaScript.

Tip Be sure to test your view states coming out of the suspending state after display characteristics

might have changed, such as plugging in a different monitor or going to the Settings charm > Change

PC Settings > Ease of Access and toggling Make Everything on the Screen Bigger. That is, it’s possible

to bring your app from the background (suspended state) directly into snap view, and screen

dimensions might also have changed while you’re suspended. So test your layout when resuming into

snap and when resuming into different screen dimensions. If necessary, add a resuming handler to

take any needed steps under these conditions.

When handling view states (or window.onresize events), you can obtain exact dimensions of your

app window through the window.innerWidth and window.innerHeight properties. The

document.body.clientWidth and document.body.clientHeight properties will be the same, as will

be the clientWidth and clientHeight properties of any element (like a div) that occupies 100% of

the document body. Within the resize event, the args.view.outerWidth and

args.view.outerHeight properties are also available.

In CSS there are also variables for the viewport height and viewport width: vh and vw. You can prefix

these with a percentage number, such that 100vh is 100% of the viewport height, and 3.5vw is 3.5% of

the viewport width. These variables can also be used in CSS calc expressions.

The current view state is also available through the

Windows.UI.ViewManagement.ApplicationViewState API. Its return value comes from the

Windows.UI.ViewManagement.ApplicationViewState enumeration as shown in the earlier table.

We’ve seen a few uses of this in earlier chapters. For instance, page controls (discussed in Chapter 3,

“App Anatomy and Page Navigation”) typically check the view state within their ready method and

directly receive those states within their updateLayout method. In fact, every method of the

groupedItems page control in the Grip App project template is sensitive to the view state. Take a look

at the groupedItems.js:

// A few lines and comments are omitted

var appView = Windows.UI.ViewManagement.ApplicationView;

var appViewState = Windows.UI.ViewManagement.ApplicationViewState;

var nav = WinJS.Navigation;

var ui = WinJS.UI;

232

ui.Pages.define("/pages/groupedItems/groupedItems.html", {

 initializeLayout: function (listView, viewState) {

 if (viewState === appViewState.snapped) {

 listView.itemDataSource = Data.groups.dataSource;

 listView.groupDataSource = null;

 listView.layout = new ui.ListLayout();

 } else {

 listView.itemDataSource = Data.items.dataSource;

 listView.groupDataSource = Data.groups.dataSource;

 listView.layout = new ui.GridLayout({ groupHeaderPosition: "top" });

 }

 },

 itemInvoked: function (args) {

 if (appView.value === appViewState.snapped) {

 // If the page is snapped, the user invoked a group.

 var group = Data.groups.getAt(args.detail.itemIndex);

 nav.navigate("/pages/groupDetail/groupDetail.html", { groupKey: group.key });

 } else {

 // If the page is not snapped, the user invoked an item.

 var item = Data.items.getAt(args.detail.itemIndex);

 nav.navigate("/pages/itemDetail/itemDetail.html", { item: Data.getItemReference(item) });

 }

 },

 ready: function (element, options) {

 // ...

 this.initializeLayout(listView, appView.value);

 // ...

 },

 // This function updates the page layout in response to viewState changes.

 updateLayout: function (element, viewState, lastViewState) {

 var listView = element.querySelector(".groupeditemslist").winControl;

 if (lastViewState !== viewState) {

 if (lastViewState === appViewState.snapped || viewState === appViewState.snapped) {

 var handler = function (e) {

 listView.removeEventListener("contentanimating", handler, false);

 e.preventDefault();

 }

 listView.addEventListener("contentanimating", handler, false);

 this.initializeLayout(listView, viewState);

 }

 }

 }

});

First, the initializeLayout method that’s called from both ready and updateLayout checks the

current view state and adjusts the ListView control accordingly. If you remember from Chapter 5, it’s

perfectly allowable to change a ListView’s layout and data source properties on the fly; here we use a

ListLayout with a list of groups for snapped view and a GridLayout with grouped items in all others.

This demonstrates how we’re showing the same content but in a more concise manner by hiding the

individual items in snapped view. Because of this, itemInvoked also has to check the view state

233

because the list items are groups in snapped view and should navigate to a group details page.

As for updateLayout, this is invoked from a window.onresize event handler in the

PageControlNavigator code (see js/navigator.js in the Grid App project template). That handler passes

the new and previous view states to updateLayout. If that function detects that we’re switching to or

from snapped state, it resets the ListView through initializeLayout. And because we’re changing the

ListView’s data source, there’s no need to play entrance or transition animations. The little trick that’s

played with the contentanimating event here simply suppresses those.

Sidebar: Physical Display Orientations

The fullscreen-landscape and fullscreen-portrait view states suggest something of how a device

is actually oriented in physical space, but such information is more accurately derived from

properties of the Windows.Graphics.Display.DisplayProperties object. Specifically, the

currentOrientation property contains a value from

Windows.Graphics,Display.DisplayOrientations that indicates how the device is rotated in

relation to its nativeOrientation (and an orientationchanged event fires when needed). This

can tell you, for example, whether the device is being held upside-down against the sky, which

would be useful for any kind of augmented reality app such as a star chart.

Similarly, the APIs in Windows.Devices.Sensors, specifically the SimpleOrientationSensor

and OrientationSensor classes can provide more information from the hardware itself.

Screen Size, Pixel Density, and Scaling
I don’t know about you, but when I first read that the snapped area was always 320 pixels—real pixels,

not a percentage of the screen width—it really set me wondering. Wouldn’t that give a significantly

different user experience on different monitors? The answer is actually no. 320 pixels is about 25% of

the baseline 1366x768 target display, which means that the remaining 75% of the screen is a familiar

1024x768. And on a 10-inch screen, it means that snap area is about the 2.5 physical inches wide. So

far so good.

With a large monitor, on the other hand, let’s say a 2560x1440 monster, those 320 pixels would only

be 12.5% of the width, so the layout of the whole screen looks quite different. However, given that

such monitors are in the 24-inch range, those 320 pixels still end up being about 2.5 physical inches

wide, meaning that the snap area gives essentially the same visual experience as before, just now with

much more vertical space to play with and much more remaining screen space.

But this now brings up the question of pixel density—what happens if your app ends up on a really

small screen that also has a really high resolution? Obviously, 320 pixels on the latter display would be

little more than an inch wide. Anyone got a magnifying glass?

Fortunately, this isn’t anything a WinRT app has to worry about…almost. The main user benefit for

such displays is greater sharpness, not greater density of information. Touch targets need to be the

234

http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.display.displayproperties.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.display.displayorientations.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.aspx

same size on any size display no matter how many pixels it occupies, because human fingers don’t

change with technology! To accommodate this, Windows automatically scales down the effective

resolution that’s reported to apps, which is to say that whatever coordinates you use within your app

(in HTML, CSS, and JavaScript) get automatically scaled up to the necessary device resolution. This

happens at within the low-level HTML/CSS rendering engine in the app host so that everything is

drawn directly against native device pixels for maximum sharpness.

As for the “almost” above, the one place where you do need to care about pixel density is with

raster graphics, as we discussed in Chapter 3 for your splash screen and tiles. We’ll return to this shortly

in the “Graphics that Scale Well” section below.

Display sizes and pixel densities can both be tested again using the Visual Studio simulator or the

Device tab in Blend. The latter, shown in Figure 6-5, indicates the applicable DPI and scaling factor.

100% scale means the device resolution is reported directly to an app. 140% and 180%, on the other

hand, indicate that scaling is taking place. With the 10.6” 2560x1440 setting with 180%, for example,

the app will see dimensions of 1422x800 (2560/1.8 by 1440/1.8), which is very close to the standard

1366x768 display; similarly, the 10.6: 1920x1080 setting with 140% scaling will appear to the app as

1371x771 (1920/1.4 by 1080/1.4). In both cases, a layout designed for 1366x768 is completely sufficient

though you can certainly be as precise as you want.

Figure 6-5 Options for display sizes and pixel densities in Blend’s Device tab.

As noted earlier with view states, you can programmatically determine the exact size of your app

window through the window.innerWidth and window.innerHeight properties, the

document.body.clientWidth and document.body.clientHeight properties, and the clientWidth

and clientHeight properties of any element that occupies 100% of the body. Within

window.onresize, you can use these (or the args.view.outerWidth and args.view.outerHeight

properties) to adjust the app’s layout for changes in the overall display. Of course, if you’re using

something like the CSS grid with fractional rows and columns to do your layout, much of that will be

handled automatically.

235

In all cases, these dimensions will already reflect automatic scaling for pixel densities, so they are the

dimensions against which you want to determine layout. If you want to know the physical display

dimensions, on the other hand, you’ll find these in the window.screen.width and

window.screen.height properties. Other aspects of the display can be found in the

Windows.Graphics.Display.DisplayProperties object, such as the logicalDPI and the current

resolutionScale. The latter is a value from the Windows.Graphics.Display.ResolutionScale

enumeration, one of scale100Percent, scale140Percent, and scale180Percent. The actual values of

these identifiers are 100, 140, and 180 so that you can use resolutionScale directly in calculations.

Sidebar: A Good Opportunity for Remote Debugging

Working with different device capabilities provides a great opportunity to work with remote

debugging as described on Running Windows WinRT apps on a remote machine. This will help

you test your app on different displays without needing to set up Visual Studio on each one, and

it also gives you the benefit of multimonitor debugging. You only need to install and run the

remote debugging tools on the target machine and make sure it’s connected with a cable to the

same network as your development machine. (You might need to buy a small USB-Ethernet

adapter if your device doesn’t have a suitable port—remote debugging doesn’t work over the

Internet, and it doesn’t work over wireless networks.) The Remote Debugging Monitor running

on the remote machine will announce itself to Visual Studio running on your development

machine. Note that the first time you run the app remotely, you’ll be prompted to obtain a

developer license for that machine, so it will need to be connected to the Internet during that

time.

Graphics that Scale Well

Variable screen sizes and pixel densities can present a bit of a challenge to apps, not just in layout but

also in making sure that graphical assets always look their best. You can certainly draw graphics directly

with the HTML5 canvas; what I want to specifically address are predrawn assets.

HTML5 scalable vector graphics (SVGs) are very handy here. You include inline SVGs in your HTML

(including page fragments), or you can keep them in separate files and refer to them in an img.src

attribute. One of the easiest ways to use an SVG is to place an img element inside a proportionally sized

cell of a CSS grid and set the element’s width and height styles to 100%. The SVG will then

automatically scale to fill the cell, and since the cell will resize with its container, everything is handled

automatically.

One caveat with this approach is that the SVG will be scaled to the aspect ratio of the containing

grid cell, which isn’t always what you want. To control this behavior, make sure the SVG has viewBox

and preserveAspectRatio attributes where the viewBox aspect ratio matches that defined by the

SVG’s width and height properties:

<svg

 xmlns:svg="http://www.w3.org/2000/svg"

 xmlns="http://www.w3.org/2000/svg"

236

http://msdn.microsoft.com/en-us/library/windows/apps/br226143.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.display.resolutionscale.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.display.resolutionscale.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441469.aspx

 xmlns:xlink="http://www.w3.org/1999/xlink"

 version="1.0"

 width="300"

 height="150"

 viewBox="0 0 300 150"

 preserveAspectRatio="xMidYMid meet">

Of course, you don’t always have nice vector graphics. Bitmaps that you include in your app

package, pictures you load from files, and raster images you obtain from a service won’t be so easily

scalable. In these cases, you’ll need to be aware of and apply the current scaling factor appropriately.

For assets in your app package, we already saw how to work with varying pixel densities in Chapter

3 through the .scale-100, .scale-140, and .scale-180 file name suffixes. These work for any and all

graphics in your app, just as they do for the splash screen, tile images, and the other graphics

referenced by the manifest. So if you have a raster graphic names banner.png, you’ll create three

graphics in your app package called banner.scale-100.png, banner.scale-140.png, and

banner.scale-180.png. You can then just refer to the base name in an element or in CSS, as in <img

src="images/banner.png"> and background-image: url('images/banner.png'), and the Windows

resource loader will magically load the appropriately scaled graphic automatically. (If files with .scale-*

suffixes aren’t found, it will look for banner.png directly.) We’ll see even more such magic in Chapter

17, “Apps for Everyone,” when we also include variants for different languages and contrast settings

that introduce additional suffixes of their own.

If your sensibilities as a developer object to this file-naming scheme, know that you can also use

similarly named folders instead. That is, create scale-100, scale-140, and scale-180 folders in your

images folder and place appropriate files with unadorned names (like banner.png) therein.

In CSS you can also use media queries with max-resolution and min-resolution settings to

control which images get loaded. Remember, however, that CSS will see the logical DPI, not the

physical DPI, so the cutoffs for each scaling factor are as follows:

@media all and (max-resolution: 134dpi) {

 /* 100% scaling */

}

@media all and (min-resolution: 135dpi) {

 /* 140% scaling */

}

@media all and (min-resolution: 174dpi) {

 /* 180% scaling */

}

As explained in the Guidelines for scaling to pixel density, such media queries are especially useful

for images you obtain from a remote source, where you might need to change the specific URI or the

URI query string.

Programmatically, you can again obtain logicalDpi and resolutionScale properties from the

Windows.Graphics.Display.DisplayProperties object. Its logicaldpichanged event can also be

237

http://msdn.microsoft.com/en-us/library/windows/apps/hh465362.aspx

used to check for changes in the resolutionScale, since the two are always coupled. Usage of these

APIs is demonstrated in the Scaling according to DPI sample.

If your app manages a cache of graphical assets, by the way, especially those downloaded from a

service, include the resolutionScale value for which that graphic was obtained. This way you can

obtain a better image if and when necessary, or you can scale down a higher resolution image that you

already obtained. It’s also something to be aware of with any app settings you might roam, because

the pixel density and screen size may vary between a user’s devices.

Adaptive and Fixed Layouts for Display Size

Just as every page of your app needs to be prepared for different view states, it should also be

prepared for different screen sizes. On this subject, I recommend you read the Guidelines for scaling to

screens, which has good information on the kinds of display sizes your app might encounter. From this

we can conclude that the smallest snapped view you’ll ever encounter is 320x768, the minimum filled

view is 1024x768, and the minimum full-screen views (portrait and landscape) are 1280x800 and

1366x768. These are your basic design targets.

From there, displays only get larger, so the question becomes “What do you do with more space?”

The first part of the answer is “Fill the screen!” Nothing looks sillier than an app running on a 27”

monitor that was designed and implemented with only 1366x768 in mind, because it will only occupy a

quarter to half of the screen at best. As I’ve said a number of times, imagine the kinds of reviews and

ratings your app might be given in the Windows Store if you don’t pay attention to certain details!

The second part of the answer depends on your app’s content. If you have only fixed content, which

is common with games, then you’ll want to use a fixed layout that scales to fit. If you have variable

content, meaning that you should show more when there’s more screen space, then you want to use

an adaptive layout. Let’s look at both of these in turn.

Sidebar: The Make Everything on Your Screen Bigger Setting

In the PC Settings app (invoke the Settings charm and select Change PC Settings in the

lower-right corner), there is an option within Ease of Access to “Make everything on your screen

bigger.” Turning this on effectively enlarges the display by about 40%, meaning that the system

will report a screen size to the app that’s about 30% smaller than the current scaled resolution

(similar to the 140% scaling level). Fortunately, this setting is disabled if it would mean reporting

a size smaller than 1024x768, which always remains the minimum screen size your app will

encounter. In any case, when this setting is changed it will trigger a

Windows.Graphics.Display.DisplayProperties.logicalDpiChanged event.

238

http://code.msdn.microsoft.com/windowsapps/Scaling-sample-cf072f4f
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx

Fixed Layouts and the ViewBox Control
A fixed layout is the best choice for apps that aren’t oriented around variable content, because there

isn’t more content to show on a larger screen. Such an app instead need to scale its output to fill the

display as best it can, depending on whether it needs to maintain an aspect ratio.

An app can certainly obtain the dimensions of its display window and redraw itself accordingly.

Every coordinate in the app would be a variable in this case, and elements would be resized and laid

out relative to one another. Such an approach is great when an app can adapt its aspect ratio to that of

the screen, thereby filling 100% of the display.

You can do the same thing with a fixed aspect ratio as well by placing limits on your coordinates,

perhaps by using an absolute coordinate system to which you then apply your own scaling factor.

Because this is the more common approach, WinJS provides a built-in layout control for exactly this

purpose: WinJS.UI.ViewBox. Like all other WinJS controls, you can declare this using

data-win-control in HTML as follows, where the ViewBox element can contain one and only one child

element:

<div data-win-control="WinJS.UI.ViewBox">

 <div class="fixedlayout">

 <p>Content goes here</p>

 </div>

</div>

This is really all you ever see with the ViewBox as it has no other options or properties, no methods,

and no events—very simple! Note also that because the ViewBox is just a control, you can use it for any

fixed aspect-ratio content in an otherwise adaptive layout; it’s not only for the layout of an entire page.

To set the reference size of the ViewBox—the dimensions against which you’ll write the rest of your

code—simply set the width and height styles of the child element in CSS. For example, to set a base

size of 1024x768, we’d set those properties in the rule for the fixedlayout class:

.fixedlayout {

 width: 1024px;

 height: 768px;

}

Once instantiated, the ViewBox simply listens for window.onresize events, and it then applies a CSS

2D scaling transform to its child element based on the difference between the reference size and the

actual size, preserving the aspect ratio. This works to scale the contents up as well as down. Automatic

letterboxing or sidepillars are also applied around the child element, and you can set the appearance

of those areas (really any area not obscured by the child element) by using the win-viewbox class. As

always, scope that selector to your specific control if you’re using more than one ViewBox in your app,

unless you want styles to be applied everywhere.

The basic structure above is what you get with a new app created from the Fixed Layout App

project template in Visual Studio and Blend. As shown here, it creates a layout with a 1024x768

239

reference size, but you can use whatever dimensions you like.

The CSS for this project template reveals that the whole page itself is actually styled as a CSS flexbox

to make sure the ViewBox is centered, and that the fixedlayout element is given a default grid:

html, body {

 height: 100%;

 margin: 0;

 padding: 0;

}

body {

 -ms-flex-align: center;

 -ms-flex-direction: column;

 -ms-flex-pack: center;

 display: -ms-flexbox;

}

.fixedlayout {

 -ms-grid-columns: 1fr;

 -ms-grid-rows: 1fr;

 display: -ms-grid;

 height: 768px;

 width: 1024px;

}

If you create a project with this template in Blend, add a border style to fixedlayout (like border:

2px solid Red;), and fiddle with the view states and the display settings on the Device tab, you can see

how the ViewBox provides all the scaling for free. To show this more obviously, the FixedLayout

example for this chapter changes the child element of the ViewBox to a canvas on which it draws a 4x3

grid (to match the aspect ratio of 1024x768) of 256px squares containing circles. As shown in Figure

6-6, the squares and circles don’t turn into rectangles and ovals as we move between view states and

display sizes, and letterboxing is handled automatically (applying a background-color style to the

win-viewbox class).

Figure 6-6 Fixed layout scaling with the WinJS.UI.ViewBox controls, showing letterboxing on a full-screen 1366x768

display (left) and in snap view (right).

240

Sidebar: Raster Graphics and Fixed Layouts

If you use raster graphics within a ViewBox, size them according to the maximum 2560x1440

resolution so that they’ll look good on the largest screens and they’ll still scale down to smaller

ones (rather than being stretched up). Alternately, you can use load different graphics (through

different img.src URIs) that are better suited for the most common screen size.

Note that resolution scaling will still be applicable. If you’re running on a high-density 10.6”

2560x1440 display (180% scale), the app and thus the ViewBox will still see smaller screen

dimensions. But if you’re supplying a graphic for the native device resolution, it will look sharp

when rendered on the screen.

Adaptive Layouts
Adaptive layouts are those in which an app shows more content when more screen space is available.

Such a layout is most easily achieved with a CSS grid where proportional rows and columns will

automatically scale up and down; elements within grid cells will then find themselves resized

accordingly. This is demonstrated in the Visual Studio/Blend project templates, especially the Grid App

project template. On a typical 1366x768 display you’ll see a few items on a screen, as shown at the top

of Figure 6-7. Switch over to a 27” 2560x1440 and you’ll see a lot more, as shown at the bottom.

241

Figure 6-7 Adaptive layout in the Grid App project template shown for a 1366x768 display (top) and a 2560x1440

display (bottom).

To be honest, the Grip App project template doesn’t do anything different for display size than it

already does for view states. Because it uses CSS grids and proportional cell sizes, the cell containing

the ListView control automatically becomes bigger. Since the ListView control is listening for

window.onresize on its own, we don’t need to separately instruct it to update its layout.

The overall strategy for an adaptive layout, then, is straightforward:

 Use a CSS grid where possible to handle adaptive layout automatically.

 Listen for window.onresize as necessary to reposition and resize elements manually,

such as an HTML canvas element.

 Have controls listen to window.onresize to adapt themselves directly. This is especially

important for collection controls like ListView.

As another reference point, refer to the Adaptive layout with CSS sample, which really takes the

same approach as the Grid App project template, relying on controls to resize themselves. As you can

see, the app isn’t doing any direct calculations based on window size.

Hint If you have an adaptive layout and want a background image specified in CSS to scale to its

container (rather than being repeated), style background-size to be either contain or 100% 100%.

It should be also clear to you as a developer that how an app handles different screen sizes is also a

design matter. The strategy above is what you use to implement a design, but the design still needs to

242

http://code.msdn.microsoft.com/windowsapps/Adaptive-layout-with-sample-062e7fe2

think about how everything should look. The following considerations, which I only summarize here,

are described on Guidelines for scaling to screens:

 Which regions are fixed and which are adaptive?

 How do adaptive regions makes use of available space, including the directions in

which that region adapts?

 How do adaptive and fixed regions relate in the wireframe?

 How does the app’s layout overall makes use of space—that is, how does whitespace

itself expand so that content doesn’t become too dense?

 How does the app make use of multicolumn text?

Answering these sorts of questions will very much help you understand how the layout should

adapt.

Using the CSS Grid

Starting back in Chapter 2, we’ve already been employing CSS grids for many purposes. Personally, I

love the grid model because it so effortlessly allows for relative placement of elements that

automatically scales to different screen sizes.

Because the focus of this book is on the specifics of Windows 8, I’ll leave it to the W3C specs on

http://www.w3.org/TR/css3-grid-layout/ and http://dev.w3.org/csswg/css3-grid-align/ to explain all

the details. These specs are essential references for understanding how rows and columns are sized,

especially when some are declared with fixed sizes, some are sized to content, and others are declared

such that they fill the remaining space. The nuances are many!

Because the specs themselves are still in the “Editor’s Draft” stage as of this writing, it’s good to

know exactly which parts of those specs are actually supported by the HTML/CSS engine used for

WinRT apps.

For the element containing the grid, the supported styles are simple:

 -ms-grid and -ms-inline-grid as display models (the display: style). We’ll come back to

-ms-inline-grid later.

 -ms-grid-columns and -ms-grid-rows on the grid element, to define its arrangement. If left

unspecified, the default is one column and one row. The repeat syntax such as -ms-grid-columns:

(1fr)[3]; is supported, which is most useful when you have repeated series of rows or columns,

which appear inside the parentheses. As examples, all the following are equivalent:

-ms-grid-rows:10px 10px 10px 20px 10px 20px 10px;

-ms-grid-rows:(10px)[3] (20px 10px)[2];

-ms-grid-rows:(10px)[3] (20px 10px) 20px 10px;

-ms-grid-rows:(10px)[2] (10px 20px)[2] 10px;

243

http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx
http://www.w3.org/TR/css3-grid-layout/
http://dev.w3.org/csswg/css3-grid-align/

How you define your rows and columns is the really interesting part, because you can make some

fixed, some flexible, and some sized to the content using the following values. Again, see the specs

for the nuances involving max-content, min-content, minmax, auto, and fit-content specifiers,

along with values specified in units of px, em, %, and fr. WinRT apps can also use vh (viewport

height) and vw (viewport width) as units.

Within the grid now, child elements are placed in specific rows and columns, with specific

alignment, spanning, and layering characteristics using the following styles:

 -ms-grid-column: identifies the 1-based column of the child in the grid.

 -ms-grid-row: identifies the 1-based row of the child in the grid.

 -ms-grid-column-align and -ms-grid-row-align specify where the child is placed in

the grid cell. Allowed values are start, end, center, and stretch (default).

 -ms-grid-column-span and -ms-grid-row-span indicate that a child spans one or

more rows/columns.

 -ms-grid-layer controls how grid items overlap. This is similar to the z-index style as

used for positional element. Since grid children are not positioned directly with CSS and

are instead positioned according to the grid, -ms-grid-layer allows for separate

control.

Be very aware that row and column styles are 1-based, not 0-based. Really re-program your

JavaScript-oriented mind to remember this, as you’ll need to do a little translation if you track child

elements in a 0-based array.

Also, when referring to any of these -ms-grid* styles as properties in JavaScript, drop the hyphens

and switch to camel case, as in msGrid, msGridColumns, msGridRowAlign, msGridLayer, and so on.

Overall, grids are fairly straightforward to work with, especially within Blend where you can

immediately see how the grid is taking shape. Let’s now take a look at a few tips and tricks that you

might find useful.

Overflowing a Grid Cell
One of the great features of the grid, depending on your point of view, is that overflowing content in a

grid cell doesn’t break the layout at all—it just overflows. (This is very different from tables!) What this

means is that you can, if necessary, offset a child element within a grid cell so that it overlaps an

adjacent cell (or cells). Besides not breaking the layout, this makes it possible to animate elements

moving between cells in the grid, if desired.

A quick example of content that extends outside its containing grid cell can be found in the

GridOverflow example with this chapter’s companion content. For the most part, it creates a 4x4 grid of

rectangles, but this code at the end of the doLayout function (default.js), places the first rectangle well

outside its cell:

244

children[0].style.width = "350px";

children[0].style.marginLeft = "150px";

children[0].style.background = "#fbb";

This makes the first element in the grid wider and moves it to the right, thereby making it appear

inside the second element’s cell (the background is changed to make this obvious). Yet the overall

layout of the grid remains untouched.

Why I cast a little doubt on this being a great feature is that you might not want this behavior at

times, hoping instead that the grid would resize to the content. For that behavior, try using an HTML

table.

Centering Content Vertically
Somewhere in your own experience with CSS, you’ve probably made the bittersweet acquaintance with

the vertical-align style in an attempt to place a piece of text in the middle of a div, or at the

bottom. Unfortunately, it doesn’t work: this particular style works only for table cells and for inline

content (to determine how text and images, for instance, are aligned in that flow).

As a result, various methods have been developed to do this, such as those discussed in

http://blog.themeforest.net/tutorials/vertical-centering-with-css/. Unfortunately, just about every

technique depends on fixed heights—something that can work for a website but doesn’t work well for

the adaptive layout needs of a WinRT app. And the one method that doesn’t use fixed heights uses an

embedded table. Urk.

Fortunately, both the CSS grid and the flexbox (see “Item Layout” later on) easily solve this problem.

With the grid, you can just create a parent div with a 1x1 grid and use the -ms-grid-row-align:

center style for a child div (which defaults to cell 1, 1):

<!-- In HTML -->

<div id="divMain">

 <div id="divChild">

 <p>Centered Text</p>

 </div>

</div>

/* In CSS */

#divMain {

 width: 100%;

 height: 100%;

 display: -ms-grid;

 -ms-grid-rows: 1fr;

 -ms-grid-columns: 1fr;

}

#divChild {

 -ms-grid-row-align: center;

 -ms-grid-column-align: center;

 /* Horizontal alignment of text also work with the following */

245

http://blog.themeforest.net/tutorials/vertical-centering-with-css/

 /* text-align: center; */

}

The solution is even simpler with the flexbox layout, where flex-align: center handles vertical

centering, flex-pack: center handles the horizontal, and a child div isn’t needed at all. This is the

same styling that’s used in the Fixed Layout App project template to center the ViewBox:

<!-- In HTML -->

<div id="divMain">

 <p>Centered Text</p>

</div>

/* In CSS */

#divMain {

 width: 100%;

 height: 100%;

 display: -ms-flexbox;

 -ms-flex-align: center;

 -ms-flex-direction: column;

 -ms-flex-pack: center;

}

Code for both these methods can be found in the CenteredText example for this chapter. (This

example is also used to demonstrate the use of ellipsis later on, so it’s not exactly as it appears above.)

Scaling Font Size
One particularly troublesome area with HTML is figuring out how to scale a font size with an adaptive

layout. I’m not suggesting you do this with the standard typography recommended by WinRT app

design as we saw earlier in this chapter—it’s more a consideration when you need to use fonts in some

other aspect of your app such as large letters on a tile in a game.

With an adaptive layout, you typically want certain font sizes to be proportional to the dimensions

of its parent element. (It’s not a concern if the parent element is a fixed size, because then you can fix

the size of the font.) Unfortunately, percentage values used in the font-size style in CSS are based on

the default font size (1em), not the size of the parent element as happens with height and width.

What you’d love to be able to do is something like font-size: calc(height * .4), but, well, the value

of other CSS styles on the same element are just not available to calc.

One exception to this is the vh value (which can be used with calc). If you know, for instance, that

the text you want to scale is contained within a grid cell that is always going to be 10% of the viewport

height, and if you want the font size to be half of that, then you can just use font-size: 5vh (5% of

viewport height).

Another method is to use an SVG for the text, wherein you can set a viewbox attribute and a

font-size relative to that viewbox. Then scaling the SVG to a grid cell will effectively scale the font:

<svg viewBox="0 0 600 400" preserveAspectRatio="xMaxYMax">

 <text x="0" y="150" font-size="200" font-family="Verdana">

 Big SVG Text

246

 </text>

</svg>

You can also use JavaScript to calculate the desired font size programmatically based on the

clientHeight property of the parent element. If that element is in a grid cell, the font size (and line

height) can be some percentage of that cell’s height, thereby allowing the font to scale with the cell.

You can also try using the WinJS.UI.ViewBox control. If you want content like text to take up 50%

of the containing element, wrap the ViewBox in a div that is styled to be 50% of the container and

style the child element of the ViewBox with position: absolute. Try dropping the following code into

default.html of a new Blank app project for a demonstration:

<div style="height:50%;">
 <div data-win-control="WinJS.UI.ViewBox">
 <p style="position:absolute;">Big text!</p>
 </div>
</div>

Item Layout

So far in this chapter we’ve explored page-level layout, which is to say, how top-level items are

positioned on a page, typically with a CSS grid. Of course, it’s all just HTML and CSS, so you can use

tables, line breaks, and anything else supported by the rendering engine so long as you adapt well to

view states and display sizes.

It’s also important to work with item layout in the flexible areas of your page. That is, if you set up a

top-level grid to have a number of fixed-size areas (for headings, title graphics, control bars, etc.), the

remaining area can vary greatly in size as the window size changes. In this section, then, let’s look at

some of the tools we have to within those specific regions: CSS transforms, flexbox, nested and inline

grids, multicolumn text, CSS figures, and CSS connected frames. A general reference for these and all

other CSS styles that are supported for WinRT apps (such as background, borders, and gradients) can

be found on the Cascading Style Sheets topic.

CSS 2D and 3D Transforms
It’s really quite impossible to think about layout for elements without taking CSS transforms into

consideration. Transforms are very powerful because they make it possible to change the display of an

element without actually affecting the document flow or the overall layout. This is very useful for

animations and transitions; transforms are used heavily in the WinJS animations library that provides

the Windows 8 look and feel for all the built-in controls. As we’ll explore in Chapter 11, “Purposeful

Animations,” you can make direct use of this library as well.

CSS transforms can also be used directly, of course, anytime you need to translate, scale, or rotate

an element. Both 2D and 3D transforms (http://dev.w3.org/csswg/css3-2d-transforms/ and

247

http://msdn.microsoft.com/en-us/library/windows/apps/hh996828.aspx
http://dev.w3.org/csswg/css3-2d-transforms/

http://www.w3.org/TR/css3-3d-transforms/) are supported for WinRT apps, specifically these styles:36

CSS Style JavaScript Property (element.style.)

backface-visibility backfaceVisibility

perspective, perspective-origin perspective, perspectiveOrigin

transform, transform-origin, and

transform-style

transform, transformOrigin, and transformStyle

Full details can be found on the Transforms reference. Know also that because the app host uses the

same underlying engines as Internet Explorer, transforms enjoy all the performance benefits of

hardware acceleration.

Flexbox
Just as the grid is magnificent for solving many long-standing problems with page layout, the CSS

flexbox module, documented at http://www.w3.org/TR/css3-flexbox/, is excellent for handling

variable-sized areas wherein the content wants to “flex” with the available space. To quote the W3C

specification:

In this new box model, the children of a box are laid out either horizontally or vertically, and unused

space can be assigned to a particular child or distributed among the children by assignment of ‘flex’ to

the children that should expand. Nesting of these boxes (horizontal inside vertical, or vertical inside

horizontal) can be used to build layouts in two dimensions.

As the flexbox spec is presently in draft form, the specific display styles for WinRT apps are display:

-ms-flexbox (block level) and display: -ms-inline-flexbox (inline).37 For a complete reference of

the other supported properties, see the Flexible Box (“Flexbox”) Layout documentation:

CSS Style JavaScript Property

(element.style.)

Values

-ms-flex-align msFlexAlign start | end | center | baseline | stretch

-ms-flex-direction msFlexDirection row | column | row-reverse | column-reverse | inherit

-ms-flex-flow msFlexFlow <direction> <pack> where <direction> is an

-ms-flex-direction value and <pack> is an

36 At the time of writing, the -ms-* prefixes on these styles were dropped but are still supported.

37 If you’re accustomed to the -ms-box* styles for flexbox, Microsoft has since aligned to the W3C specifications that are

expected to be the last major revision before the standard is finalized. As the new syntax replaces the old, the old will not

work in WinRT apps nor Internet Explorer 10.

248

http://www.w3.org/TR/css3-3d-transforms/
http://msdn.microsoft.com/en-us/library/windows/apps/hh453377.aspx
http://www.w3.org/TR/css3-flexbox/
http://msdn.microsoft.com/en-us/library/windows/apps/hh453474.aspx

-ms-flex-pack value.

-ms-flex-orient msFlexOrient horizontal | vertical | inline-axis | block-axis | inherit

-ms-flex-item-align msFlexItemAlign auto | start | end | center | baseline | stretch

-ms-flex-line-pack msFlexLinePack start | end | center | justify | distribute | stretch

-ms-flex-order msFlexOrder <integer> (ordinal group)

-ms-flex-pack msFlexPack start | end | center | justify

-ms-flex-wrap msFlexWrap none | wrap | wrapreverse

As with all styles, Blend is a great tool in which to experiment with different flexbox styles because

you can see the effect immediately. It’s also helpful to know that flexbox is used in a number of places

around WinJS and in the project templates, as we saw with the Fixed Layout template earlier. The

ListView control in particular takes advantage of it, allowing more items to appear when there’s more

space. The FlipView uses flexbox to center its items, and the Ratings, DatePicker, and TimePicker

controls all arrange their inner elements using an inline flexbox. It’s likely that your own custom

controls will do the same.

Nested and Inline Grids
Just as the flexbox has both block level and inline models, there is also an inline grid: display:

-ms-inline-grid. Unlike the block level grid, the inline variant allows you to place several grids on the

same line. This is shown in the InlineGrid example for this chapter, where we have three div elements

in the HTML that can be toggled between inline (the default) and block level models:

//Within the activated handler

document.getElementById("chkInline").addEventListener("click", function () {

 setGridStyle(document.getElementById("chkInline").checked);

});

setGridStyle(true);

//Elsewhere in default.js

function setGridStyle(inline) {

 var gridClass = inline ? "inline" : "block";

 document.getElementById("grid1").className = gridClass;

 document.getElementById("grid2").className = gridClass;

 document.getElementById("grid3").className = gridClass;

}

/* default.css */

.inline {

249

 display: -ms-inline-grid;

}

.block {

 display: -ms-grid;

}

When using the inline grid, the elements appear as follows:

When using the block level grid, we see this instead:

Fonts and Text Overflow
As discussed earlier, typography is an important design element for WinRT apps, and for the most part

the standard font styles using Segoe UI are already defined in the default WinJS stylesheets. In the

Windows SDK there is a very helpful CSS typography sample that compares the HTML header elements

and the win-type-* styles, font fallbacks, and using bidirectional fonts (left to right and right to left

directions).

Speaking of fonts, custom font resources using the @font-face rule in CSS are allowed in WinRT

apps. For local context pages, the src property for the rule must refer to an in-package font file (that is,

a URI that begins with / or ms-appx:///). Pages running in the web context can load fonts from

remote sources.

Another piece of text and typography is dealing with text that overflows its assigned region. You

can use the CSS text-overflow: ellipsis; style to crop the text with a …, and the WinJS stylesheets

250

http://code.msdn.microsoft.com/windowsapps/typography-JS-sample-e2df9eb4

contain the win-type-ellipsis class for this purpose. In addition to setting text-overflow, this class

also adds overflow: hidden (to suppress scrollbars) and white-space: nowrap. It’s basically a style you

can add to any text element when you want the ellipsis behavior.

The W3C specifications on text overflow, http://dev.w3.org/csswg/css3-ui/#text-overflow, is a

helpful reference as to what can and cannot be done here. One of the limitations of the current spec is

that multiline wrapping text doesn’t work with ellipsis. That is, you can word-wrap with the word-wrap:

break-word style, but it won’t cooperate with text-overflow: ellipsis (word-wrap wins). I also

investigated whether flowing text from a multiline CSS region (see next section) into a single-line

region with ellipsis would work, but text-overflow doesn’t apply to regions. So at present you’ll need

to shorten the text and insert ellipsis manually if it spans multiple lines.

For a small demonstration of ellipsis and word-wrapping, see the CenteredText example for this

chapter.

Multicolumn Elements and Regions
Translating the multicolumn flow of content that we’re so accustomed to in print media has long been

a difficult proposition for web developers. While it’s been easy enough to create elements for each

column, there was no inherent relationship between the content in those columns. As a result,

developers have had to programmatically determine what content could be placed in each element,

accounting for variations like font size or changing the number of columns based on the screen width

or changes in device orientation.

CSS3 provides for doing multicolumn layout within an element (see

http://www.w3.org/TR/css3-multicol). With this, you can instruct a single element to lay out its contents

in multiple columns, with specific control over many aspects of that layout. The specific styles

supported for WinRT apps (with no pesky little vendor prefixes!) are as follows:

CSS Styles JavaScript Property (element.style.)

column-width and column-count (columns is the shorthand) columnWidth, columnCount, and columns

column-gap, column-fill, and column-span columnGap, columnFill, and columnSpan

column-rule-color, column-rule-style, and

column-rule-width (column-rule is the shorthand for

separators between columns)

columnRuleColor, columnRuleStyle, and columnRuleWidth

(columnRule is the shorthand)

break-before, break-inside, and break-after breakBefore, breakInside, and breakAfter

overflow: scroll (to display scrollbars in the container) Overflow

The reference documentation for these can be found on Multi-column layout.

251

http://dev.w3.org/csswg/css3-ui/#text-overflow
http://www.w3.org/TR/css3-multicol/
http://msdn.microsoft.com/en-us/library/windows/apps/hh441204.aspx

Again, Blend provides a great environment to explore how these different styles work. If you’re

placing a multicolumn element within a variable-size grid cell, you can set column-width and let the

layout engine add and remove columns as needed, or you can use media queries or JavaScript to set

column-count directly.

CSS3 multicolumn again only applies to the contents of a single element. While highly useful, it

does impose the limitation of a rectangular element and rectangular columns (spans aside). Certain

apps like magazines need something more flexible, such as the ability to flow content across multiple

elements with more arbitrary shapes, and columns that are offset from one another. These

relationships are illustrated in Figure 6-8, where the box in the upper left might be a title, the inset box

might contain an image, and the text content flows across two irregular columns.

Figure 6-8 Using CSS regions to achieve a more complex layout with irregular text columns.

To support irregular columns, CSS Regions (see http://dev.w3.org/csswg/css3-regions/) are coming

online and are supported in WinRT apps (see Regions reference). Regions allow arbitrarily (that is,

absolutely) positioned elements to interact with inline content. In Figure 6-8, the image would be

positioned absolutely on the page and the column content would flow around it.

The key style for a positioned element is the float: -ms-positioned style which should accompany

position: absolute. Basically that’s all you need to do: drop in the positioned element, and the layout

engine does the rest. It should be noted that CSS Hyphenation, yet another module, relates closely to

all this because doing dynamic layout on text immediately brings up such matters. Fortunately, WinRT

apps support the –ms-hyphens and the -ms-hyphenation-* styles (and their equivalent JavaScript

properties). The hyphenation spec is located at http://www.w3.org/TR/css3-text/; documentation for

WinRT apps is found on the Text styles reference.

The second part of the story consists of named flows and region chains (which are also part of the

Regions spec). These provide the ability for content to flow across multiple container elements, as

shown in Figure 6-9. Region chains can also allow the content to take on the styling of a particular

container, rather than being defined at the source. Each container, in other words, gets to set its own

252

http://dev.w3.org/csswg/css3-regions/
http://msdn.microsoft.com/en-us/library/windows/apps/hh453722.aspx
http://www.w3.org/TR/css3-text/
http://msdn.microsoft.com/en-us/library/windows/apps/hh453722.aspx

styling and the content adapts to it, but commonly all the containers share similar styling for

consistency.

Figure 6-9 CSS region chains to flow content across multiple elements.

How this all works is that the source content is defined by an iframe that points to an HTML file

(and the iframe can be in the web or local context, of course). It’s then styled with -ms-flow-into:

<element> (msFlowInfo in JavaScript) where <element> is the id of the first container:

<!-- HTML -->

<iframe id="s1-content-source" src="/html/content.html"></iframe>

<div class="s1-container"></div>

<div class="s1-container"></div>

<div class="s1-container"></div>

/* CSS */

#s1-content-source {

 -ms-flow-into: content;

}

Note that -ms-flow-into prevents the iframe content from displaying on its own.

Container elements can be any nonreplaced element—that is, any element whose appearance and

dimensions are not defined by an external resource, such as img—and can contain content between its

opening and closing tabs, like a div (the most common) or p. Each container is styled with

-ms-flow-from: <element> (msFlowFrom in JavaScript) where the <element> is the first container in

the flow. The layout then happens in the order elements appear in the HTML (as above):

.s1-container {

 -ms-flow-from: content;

 /* Other styles */

}

This simple example was taken from the Static CSS Regions sample in the Windows SDK, which also

provides a few other scenarios. There are two other applicable projects here as well, the Dynamic CSS

Regions sample and the Dynamic CSS Region templates sample, where the latter is the source for

253

http://code.msdn.microsoft.com/windowsapps/Static-Regions-sample-f2158049
http://code.msdn.microsoft.com/windowsapps/Dynamic-Regions-Sample-f600c0c1
http://code.msdn.microsoft.com/windowsapps/Dynamic-Regions-Sample-f600c0c1
http://code.msdn.microsoft.com/windowsapps/Dynamic-Region-Templates-94bc9c95

Figure 6-8 above. In all these cases, be aware that styling for regions is limited to properties that affect

the container and not the content—content styles are drawn from the iframe HTML source. This is why

using text-overflow: ellipsis doesn’t work, nor will font-color and so forth. But styles like height

and width, along with borders, margin, padding, and other properties that don’t affect the content can

be applied.

What We’ve Just Learned

 Layout that is consistent with Windows 8 design principles—specifically the silhouette

and typography—helps users focus immediately on content rather than having to

figure out each specific app.

 The principle of “content before chrome” allows content to use 75% or more of the

display space rather than 25% as is common with chrome-heavy desktop or web

applications.

 In some cases, such as a home or hub page of an app with varied and content that does

not come from a single collection, it’s best to just use plain HTML/CSS layout rather

than using a control.

 Pannable HTML sections can use snap points to automatically stop panning at

particular intervals within the content.

 The CSS grid is clearly the most useful mechanism for adaptive page-level layout, and it

can also be used inline. The CSS flexbox is most useful for inline content, though it has

uses at the page level as well, as for centering content vertically and horizontally.

 Every page of an app (including the extended splash screen) can encounter all four view

states, so an app design must show how those states are handled. Media queries and

the Media Query Listener API can be used to handle the view states declaratively and

programmatically.

 Apps can specify a preferred orientation in their manifest and also lock the orientation

at run time.

 The window.onresize event is best for knowing when the window size has changed,

due to view states and/or changes in screen size and pixel density.

 Handling varying screen sizes is accomplished either through a grid-based adaptive

layout or a fixed layout utilizing the WinJS.UI.ViewBox control that does automatic

scaling of its content.

 The chief concern with pixel density is providing graphics that scale well. This means

either using vector graphics or providing scaled variants of each raster graphic.

254

 WinRT apps can take advantage of a wide range of CSS 3 options, including the grid,

flexbox, transforms, multicolumn text, and regions.

255

Chapter 7

Commanding UI

For consumers coming anew to Windows 8 and WinRT apps, one of their first reactions will likely be

“Where are the menus? Where is the ribbon? How do I tell this app to do something with the items I

selected from a list?” This will be a natural response until users become more accustomed to where

commands live, giving another meaning, albeit a mundane one, to the dictum “Blessed are those who

have not seen, and yet believe!”

With the design principle of “content before chrome,” UI elements that exist solely to invoke actions

and don’t otherwise contain meaningful content fall into the category of “chrome.” As such, they are

generally kept out of sight until needed, as are system-level commands like the Charms bar. The user

indicates his or her desire for those commands through an appropriate gesture. A swipe on the top or

bottom edge of the display, a right mouse button click, or the Win+Z key combination brings up

app-specific commands at the top and bottom. A swipe on the left edge of the display, a mouse click

on the upper left corner, or Win+Tab allows for switching between apps. And a swipe on the right

edge of the display, a mouse click on the upper-right or lower-right corner, or Win+C reveals the

Charms bar. (Win+Q, Win+H, and Win+i open the Search, Share, and Settings charms directly.) In the

latter case, an app responds to the different charms through particular contracts, as we’ll see in a

number of the chapters that follow.

App-specific commands, for their part, are generally provided through an app bar control:

WinJS.UI.AppBar. In many ways, the app bar is the equivalent of a menu and ribbon for WinRT apps,

because you can create all sorts of UI within it and even show menu elements. Menus, supplied by the

WinJS.UI.Menu control, can also pop up from specific points on the app’s main display, such as a menu

attached to a header.

The app bar and menus are specific instances of the more generic WinJS.UI.Flyout control, which

can be used directly for messages or actions that the user can cancel or ignore; such flyouts are

dismissed simply by clicking or tapping outside the flyout’s window. (This is like pressing a Cancel

button.) For important messages that require action—that is, where the user must choose between a

set of options—apps employ WinJS.UI.MessageDialog. Dialog boxes are a familiar concept from the

world of desktop applications, of course, and have long been used for collecting all kinds of

information and adjusting app settings. In WinRT app design, however, dialog boxes are used only to

ask a question and get a simple answer, or just to inform the user of some condition. Settings are

specifically handled through the Settings charm, as we’ll see in Chapter 8, “State, Settings, Files, and

Documents.”

An important point with all of these command controls is that they don’t participate in page layout:

they instead “fly out” and remain on top of the current page. This means we thankfully don’t need to

worry about their impact on layout…with one small exception that I’ll keep secret for now.

256

To begin with, though, let’s take a step back to think about an app’s commands as a whole, and

where those commands are ideally placed.

Where to Place Commands

The placement of commands is really quite central to WinRT app design. Unlike the guidelines—or lack

thereof!—for desktop application commands, which has resulted in quite a jumble, the Windows

Developer Center offers two rather extensive topics on this subject: Commanding design and Choosing

the right UI surfaces. These are must-reads for any designer working on an app, because they describe

the different kinds of commanding UI and how to gain the best smiling accolades from Windows 8

design pundits. These are also good topics for developers because they can give you some idea of

what you might expect from your designers. Let’s review that guidance, then, as an introductory tour

to the various options:

 The user should be able to complete their most important scenarios using just the app canvas,

so commands that are essential to a workflow should appear directly on-screen. The overall

purpose here is to minimize the distraction of unnecessary commands. Nonessential commands

should be kept out of view, except for navigation options that can be placed in a drop-down

header menu like this:

 Always use Charms for common app commands where possible. That is, instead of

supplying your own search control, use the Search charm (except when the app has a

much richer search UI with additional criteria beyond keywords). Instead of supplying

individual commands to share with specific targets such as email apps, your contacts,

social network apps, and the like, use the Share charm. Instead of supplying your own

Print commands, rely on the Device charm. And instead of creating pages within your

navigation hierarchy for app settings, help, About, permissions, license agreements,

privacy statements, and login/account management, simplify your life and use the

Settings charm! (Refer also to “Sidebar: Logins and License Agreements.”) Examples of

these are shown in the image below, which also illustrates that many app commands

can leverage the Charms bar, which means less clutter in the rest of your commanding

UI. Again, we’ll cover how to respond to Charms events in later chapters.

257

http://msdn.microsoft.com/en-us/library/windows/apps/hh761499
http://msdn.microsoft.com/en-us/library/windows/apps/hh465304.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465304.aspx

 Commands that can’t be placed in Charms and don’t need to be on the app canvas are

then placed within the app bar as shown below in the Travel app; this is the closest

analogy to a traditional menu:

 The top app bar is reserved for navigation commands.

 The bottom app bar contains all other commands that are sensitive to the context or

selection, as well as global (nonselection) commands. Context and global commands are

placed on different sides of the app bar.

 App bar commands can display menus to group related commands and not clutter the

app bar itself.

258

 Context menus can provide specific commands for particular content or a selection. For

example, selected text typically provides a context menu for clipboard commands, as

shown here from the Mail app.

 Confirmations and other questions (including collecting information) that you need to

display in response to a user action should use a flyout control; see Guidelines and

checklist for Flyouts. Tapping or clicking outside the control (or pressing ESC) is the

same as canceling. Here’s an example from the SkyDrive app:

 For blocking events that are not related to a user command but that affect the whole

app, use a message dialog. A message dialog effectively disables the rest of the app

until you pay attention to it! A good example of this is a loss of network connectivity,

where the user needs to be informed that some capabilities may not be available until

connectivity is restored. User consent prompts for capabilities like geolocation, as

shown below from the Maps app, is another place you see message dialogs. Note that a

message dialog is used only when the app is in the foreground. Toast notifications, as

we’ll see in Chapter 13, “Tiles, Notifications, the Lock Screen, and Background Tasks,”

apply only to background apps.

 Finally, other errors that don’t require user action can be displayed either inline (on the

app canvas) or through flyouts. See Laying out your UI: errors for full details; we’ll see

some examples later on as well.

Where the bottom app bar is concerned, it’s also important to organize your commands into sets, as

259

http://msdn.microsoft.com/en-us/library/windows/apps/hh465341
http://msdn.microsoft.com/en-us/library/windows/apps/hh465341
http://msdn.microsoft.com/en-us/library/windows/apps/hh465304.aspx#errors

this streamlines implementation as we’ll see in the next section. For full guidance I recommend two

additional topics in the documentation: Guidelines and checklist for app bars and Commanding

Design, which provide many specifics on placement, spacing, and grouping. That guidance can be

summarized as follows:

 First, make two groups of commands: one with those commands that appear throughout the

entire app, regardless of context, and another with those that show only on certain pages. The

app bar control is fairly simple to reconfigure at run time for different groups.

 Next, create command sets, such as those that are functionally related, those that toggle view

types, and those that apply to selections. Remember again that an app bar command can

display a popup menu, as shown below, to provide a list of options and/or additional controls,

including longer labels, drop-down lists, checkboxes, radiobuttons, and toggle switches. In

this way you can combine closely related commands into a single one that gets more room to

play than its little space on the app bar proper.

 For placement, put persistent commands on the right side of the app bar and the most

common context-specific commands on the left. After that, begin to populate toward the

middle. This recommendation comes from the ergonomic realities of human hands: fingers

and thumbs—even on the largest hands of basketball players!—grow only so long and can

reach only so far on the screen without having to move one’s hand. By placing the most

commonly used commands nearest to where a person would be holding a device, as

indicated in the image below (from the Windows 8 Touch Posture topic in the

documentation). Those spots are easier to reach (especially by those of us that can’t grip a

large ball with one hand!) and thus make the whole user experience more comfortable.

260

http://msdn.microsoft.com/en-us/library/windows/apps/hh465302.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465302.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761499
http://msdn.microsoft.com/en-us/library/windows/apps/hh761499
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx#touch_posture
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx#touch_posture

 The app bar is always available in all view states, including snapped. It’s recommended in

snapped view (and sometimes portrait) to limit the commands to 10 so that they can fit into

one or two rows.

 Know too that the app bar is not limited to circular command buttons: you can create

whatever custom layout you like, which is how top navigation bars are implemented. With

any custom layout, make sure that your elements are appropriately sized for touch

interaction. More on this—including a small graphic of the aforementioned finger of a

basketball player—can again be found on Guidelines and checklist for app bars as well as

Touch interaction design under “Windows 8 Touch targets.”

Sidebar: Logins and License Agreements

As noted above, Microsoft recommends that login/account management and license

agreements/terms-of-use pages are displayed through the Settings charm, where relevant

commands are added to the Settings pane that first appears when the charm is invoked. These

commands then invoke subsidiary pages with the necessary controls for each of these functions.

Of course, sometimes logins and license agreements need some special handling. For example, if

your app requires a login or license agreement on startup, such controls can be shown on the

app’s first page or in a flyout. If the user provides a login and/or agrees to the terms of service,

the app can continue to run. Otherwise, the app should show a page that indicates that a login

or agreement is necessary to do something more interesting than stare at error messages.

If a login is recommended but not required, perhaps to enable additional features, you can

place those controls directly on the canvas. When the user logs in, you can replace those controls

with bits of profile information (user name and picture, for example, as on the Windows Start

screen). If, on the other hand, a login is entirely optional, keep it entirely within Settings.

In all cases, commands to view the license agreement, manage one’s account or profile, and

log in or out should still be available within Settings. Other app bar or on-canvas commands can

invoke Settings programmatically, as we’ll see in Chapter 8.

The App Bar

After placing the most essential commands on the app canvas, most of your app’s commands will be

placed in the app bar. Again, the app bar is automatically brought up in response to various user

gestures, such as a top or bottom edge swipe, Win+Z, or a right mouse button click. To be specific,

whenever you perform one of these gestures, Windows looks for app bar controls on the current page

and invokes them—you don’t need to process any input events yourself.

For WinRT apps written in HTML and JavaScript, the app bar control is implemented as a WinJS

control: WinJS.UI.AppBar. As with all other WinJS controls, you declare an app bar in HTML and

instantiate it with a call to WinJS.UI.process or WinJS.UI.processAll. For a first example, we don’t

261

http://msdn.microsoft.com/en-us/library/windows/apps/hh465302.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465302.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229670.aspx

need to look any farther than some of the Visual Studio/Blend project templates like the Grid App

project, where a placeholder app bar is included in default.html (initially commented out):

<div id="appbar" data-win-control="WinJS.UI.AppBar">

 <button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'cmd', label:'Command', icon:'placeholder'}">

 </button>

</div>

The super-exciting result of this markup, using the ui-dark.css stylesheet, is as follows:

Because the app bar is declared in default.html, which is the container for all other page controls,

this same app bar will apply to all the pages in the app. With this approach you can declare all your

commands within a single app bar and assign different classes to the commands that allow you to

easily show and hide command sets as appropriate for each page. This also centralizes those

commands that appear on multiple pages, such that you can wire up event handlers for them in your

app’s primary activation code (such as that in default.js).

Alternately, you can declare an app bar within the markup for individual page controls. Since an app

bar will still be in the DOM, the Windows gestures will invoke it on each particular page. In the Grid

App project, for example, you can move the markup above from default.html into groupedItems.html,

groupDetail.html, and itemDetail.html with whatever modifications you like for each page. This might

be especially useful if your app’s pages don’t share many commands in common.

In these cases, each page’s ready method should take care of wiring up the commands on its

particular app bar. Note also that you can add handlers within a page’s ready method even for a

central app bar; it’s just a matter of calling addEventListener on the appropriate child element within

that app bar.

Let’s look now at how all this works by using the HTML AppBar control sample. (This chapter’s

companion content also has a modified version.) We’ll start with the basics and the standard

command-oriented configuration for app bars, look at how to display menus for some of those

commands, and then see how to create custom layouts as is used for a top navigation bar.

Hint Technically speaking, you can declare as many app bars as you want in whatever pages you

want, and they’ll all be present in the DOM. However, the last one that gets processed in your markup

will be the one that’s topmost in the z-index (by default) and therefore the one to receive events.

Windows does not make any attempt to combine app bars, so because page controls are inserted into

the middle of a host page like default.html, an app bar in default.html that’s declared after the page

control host element will appear on top. At the same time, if the page control’s app bar is larger than

that in default.html, a portion of it might be visible. The bottom line is, declare app bars either in the

host page or in a page control, but not both.

262

http://code.msdn.microsoft.com/windowsapps/App-bar-sample-a57eeae9
http://code.msdn.microsoft.com/windowsapps/App-bar-sample-a57eeae9
http://code.msdn.microsoft.com/windowsapps/App-bar-sample-a57eeae9

App Bar Basics and Standard Commands
As I just mentioned, an app bar can be declared once for an app in a container page like default.html

or can be declared separately for each individual page control. The HTML AppBar control sample does

the latter, because it provides very distinct app bars for its various scenarios.

Scenario 1 of the sample (html/create-appbar.html) declares an app bar with four commands and a

separator:

<div id="createAppBar" data-win-control="WinJS.UI.AppBar" data-win-options="">

 <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdAdd', label:'Add',

 icon:'add', section:'global', tooltip:'Add item'}">

 </button>

 <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdRemove',

 label:'Remove', icon:'remove', section:'global', tooltip:'Remove item'}">

 </button>

 <hr data-win-control="WinJS.UI.AppBarCommand" data-win-options="{type:'separator',

 section:'global'}" />

 <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdDelete',

 label:'Delete', icon:'delete', section:'global', tooltip:'Delete item'}">

 </button>

 <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdCamera',

 label:'Camera', icon:'camera', section:'selection', tooltip:'Take a picture'}">

 </button>

</div>

This appears in the app as follows, using the ui-light.css stylesheet, in which we can also see a

tooltip, a focus rectangle, and a hover effect on the Add command:

In the markup, the app bar control is declared like any other WinJS control (this is becoming a

habit!) using some containing element (a div) with data-win-control="WinJS.UI.AppBar". Each

page in this sample is loaded with WinJS.UI.Pages.render that conveniently calls

WinJS.UI.processAll to instantiate the app bar. (It is also allowable, as with other controls, to create

an app bar programmatically using the new operator.)

This example doesn’t provide any specific options for the app bar in its data-win-options, but

there are a number of possibilities:

 disabled: if set to true, creates an initially disabled app bar; the default is false.

 layout can be "commands" (the default) or "custom", as we’ll see in the “Custom App

Bars and Navigation Bars” section later.

 placement can be either "top" or "bottom" (the default). We’ll use "top" for a

navigation bar later.

 sticky changes the light-dismiss behavior of the app bar. With the default of false,

263

the app bar will be dismissed when you click or tap outside of it. If this is set to true,

the app bar will stay on the screen until you either change sticky to false and tap

outside or programmatically brush away the control with its hide method.

So, if you wanted a sticky navigation bar with a custom layout to appear at the top of the screen,

you’d use markup like this:

<div id="navBar" data-win-control="WinJS.UI.AppBar"

 data-win-options="{layout:'custom', placement:'top', sticky: true}">

Note that having two app bars in a page with different placement values will not interfere with each

other. Also, the sticky property for each placement operates independently. So if you want to

implement an appwide top navigation bar, you could declare that within default.html (or whatever

your top-level page happens to be), and declare bottom app bars in each page control. Again, they’re

all just elements in the DOM!

As you can see, an app bar control can contain any number of child elements for its commands,

each of which must be a WinJS.UI.AppBarCommand control within a button or hr element or the app

bar won’t instantiate.

The properties and options of an app bar command are as follows:

 id The element identifier, which you can use with document.getElementById or the

app bar’s getCommandById method to wire up click handlers.

 type One of "button" (the default), "separator" (which creates a vertical bar),

"flyout" (which triggers a popup specified with the flyout property; see “Command

Menus” later on), and "toggle" (which creates a button with on/off states). In the latter

case, the selected property of a command can also be used to set the initial value and

to retrieve the state at run time.

 label The text shown below for the command button. You always want to use this

instead of providing text for the button element itself, because such text won’t be

aligned properly in the control. (Try it and you’ll see!) Also, note that this property,

along with tooltip below, is often localized using data-win-res attributes. We’ll cover

this in Chapter 17, “Apps for Everyone,” but for the time being you can look at the

localize-appbar.html file in the sample (Scenario 8) to see how it works.

 tooltip The (typically localized) tooltip text for the command, using the

value of label as the default. Note that this is just text; using a full

HTML-based WinJS.UI.Tooltip control here is not supported.

 icon Specifies the glyph that’s shown in the command. Typically, this is one

of the strings from the WinJS.UI.AppBarIcon enumeration, which contains 150

different options from the Segoe UI Symbol font. If you look in the ui.strings.js resource

file of WinJS you can see how these are defined using codes like \uE109—the

enumeration, in fact, simply provides friendly names for character codes \uE100

264

http://msdn.microsoft.com/en-us/library/windows/apps/hh700497.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770557.aspx

through \uE1E9. But you’re not limited by these. For one thing, you can use any other

Unicode escape value '\uXXXX' you want from the Segoe UI Symbol font. (Note the

single quotes.) You can also use a different font or use your own graphics as described

in “Custom Icons” later.38

 section Controls the placement of the command. For left-to-right languages

(such as English), the default value of "selection" places the command on the

left side of the app bar and "global" places it on the right. For right-to-left languages

(such as Hebrew and Arabic), the sides are swapped. These simple choices encourage

consistent placement of these two categories of commands (and using any other

random value here defaults to "selection"). This trains users’ eyes to look for the most

constant commands on one side and selection-specific commands on the other. Note

that the commands in each section are laid out left-to-right (or right-to-left) in the

order they appear in your markup.

 onclick Can be used to declaratively specify a click handler; remember that

any function named here in markup must be marked safe for processing. (See

Chapter 4, “Controls and Data Binding” in the “Strict Processing and processAll

Functions” section.) Click handlers can also be assigned programmatically with

addEventListener, in which case the mark is not needed.

 disabled Sets the disabled state of a command if true; the default is false.

 extraClass Specifies one or more CSS classes that are attached to the command.

These can be used to individually style command controls as well as to create sets that

you can easily show and hide, as explained in the “Showing, Hiding, Enabling, and

Updating Commands” section later.

If you want to generate commands at run time, you can do so by setting the app bar’s commands

property with an array of JSON AppBarCommand descriptors any time the app bar isn’t visible (that is,

when its hidden property is true). An array of such descriptors for the Scenario 1 app bar in the sample

would be as follows (this is provided in the modified sample included with this chapter; see

js/create_appbar.js):

var appbar = document.getElementById("createAppBar").winControl;

//Set the app bar commands property to populate it

var commands = [

 { id: 'cmdAdd', label: 'Add', icon: 'add', section: 'global', tooltip: 'Add item' },

 { id: 'cmdRemove', label: 'Remove', icon: 'remove', section: 'global', tooltip: 'Remove item' },

 { type: 'separator', section: 'global' },

 { id: 'cmdDelete', label: 'Delete', icon: 'delete', section: 'global', tooltip: 'Delete item' },

38 Three notes: First, within data-win-options the Unicode escape sequence can also be in the HTML form of &#xNNNN; I

prefer the JSON form because it has much less ceremony and is less prone to error. Second, you can use the Character

Map desktop applet (charmap.exe) to examine all the symbols within any particular font. Third, if you need to localize an

icon, you can specify the icon property in the data-win-res string since the icon property ultimately resolves to a string.

265

 { id: 'cmdCamera', label: 'Camera', icon: 'camera', section: 'selection', tooltip: 'Take a picture' }

];

appbar.commands = commands;

When the app bar is created, it will iterate through the commands array and create

WinJS.UI.AppBarCommand controls for each item. If type isn’t specified or if it’s set to "button",

"flyout", or "toggle", then the command is a button element. A type of "separator" creates an hr

element. Note that you should localize the label, tooltip, and possibly icon fields in each command

declaration rather than using explicit text as shown here.

You can also use such an array directly within the declarative markup, but this form cannot be

localized and is thus discouraged (though I include comments that show how in the modified sample).

At the same time, because the value of commands in markup is just a string, you can assign its value

through data binding with an attribute like this in the app bar element:

data-win-bind="{ winControl.commands: myData.commands }"

where myData.commands can clearly refer to a localized data source. However, this does not work with

the data-win-res attribute (as we’ll see in Chapter 17, “Apps for Everyone” and which is also shown in

Scenario 8 of the sample) because the resource string won’t be converted to JSON as part of the

resource lookup. Attempting to play such a trick would be more trouble than it’s worth anyway, so it’s

best to use either the HTML declarative form or a localized commands array at run time.

Also, be aware that commands is a rare example of a write-only property: you can set it, but you

cannot retrieve the array from an app bar. The app bar uses this array only to configure itself and the

array is discarded once all the elements are created in the DOM. At run time, however, you can use the

app bar’s getCommandById method to retrieve a particular command element.

Command Events

Speaking of the command elements, an app bar’s AppBarCommand controls (other than separators) are

all just button elements and thus respond to the usual events. Because each command element is

assigned the id you specify, you can use getElementById as usual as a prelude to addEventListener.

In Scenario 1 of the HTML App Bar control sample, for instance, this code appears in the page’s ready

method:

document.getElementById("cmdAdd").addEventListener("click", doClickAdd, false);

document.getElementById("cmdRemove").addEventListener("click", doClickRemove, false);

document.getElementById("cmdDelete").addEventListener("click", doClickDelete, false);

document.getElementById("cmdCamera").addEventListener("click", doClickCamera, false);

Although this works, each call to document.getElementById traverses the entire DOM and is

relatively inefficient. I would recommend that you use the app bar’s getCommandById method instead,

a change I’ve made throughout the modified sample included with this chapter:

//Using the app bar's getCommandById avoids traversing the entire DOM for each button

var appbar = document.getElementById("createAppBar").winControl;

appbar.getCommandById("cmdAdd").addEventListener("click", doClickAdd, false);

266

appbar.getCommandById("cmdRemove").addEventListener("click", doClickRemove, false);

appbar.getCommandById("cmdDelete").addEventListener("click", doClickDelete, false);

appbar.getCommandById("cmdCamera").addEventListener("click", doClickCamera, false);

Of course, if you specify a handler for each command’s onclick property in your markup (with each

one again having its supportedForProcessing property set to true), you can avoid all of this entirely!

It should also be obvious that you can wire up events like this from anywhere in your app, and you

can certainly listen to any other events you want to, especially when doing custom layouts with other

UI. Also, know that the click event conveniently handles touch, mouse, and keyboard input alike, so

you don’t need to do any extra work there. In the case of the keyboard, by the way, the app bar lets

you move between commands with the Tab key; Enter or Spacebar will invoke the click handler.

App Bar Events and Methods

In addition to the app bar’s getCommandById method we just saw, the app bar has several other

methods and a handful of events. First, the methods:

 show displays an app bar if its disabled property is false; otherwise, the call is ignored.

 hide dismisses the app bar.

 showCommands, hideCommands, and showOnlyCommands are used to manage command

sets as described in the next section, “Showing, Hiding, Enabling, and Updating

Commands.”

As for events, there are a total of four that are common to the overlay-style UI controls in WinJS

(that is, those that don’t participate in layout):

 [on]beforeshow occurs before a flyout becomes visible. For an app bar, this is a time

when you could set the commands property depending on the state of the app at the

moment or enable/disable specific commands.

 [on]aftershow occurs immediately after a flyout becomes visible. For an app bar, if it’s

sticky property is true, you can use this event to adjust the app’s layout if you have a

scrolling element that might be partially covered otherwise—see below.

 [on]beforehide occurs before a flyout is hidden. For an app bar, you’d use this event

to hide any supplemental UI created with the app bar and to readjust layout around a

sticky app bar.

 [on]afterhide occurs immediately after a flyout is hidden. For an app bar, this again

could be a time to readjust the app’s layout if necessary.

You can find an example of using the show method along with the aftershow and beforehide

events in Scenario 4 of the HTML AppBar control sample.

The matter with app layout identified above (and what I kept secret in the introduction to this

chapter) arises because an app bar overlays and obscures the bottom portion of the page. If that page

267

contains a scrolling element, an app bar with sticky set to true will, for mouse users, partly cover a

vertical scrollbar and will make a horizontal scrollbar wholly inaccessible. If you’re using a sticky app

bar with such a page, then—and because Windows Store policy does not look kindly upon

discrimination against mouse users!— you should use aftershow to reduce the scrolling element’s

height by the offsetHeight or clientHeight value of the app bar control, thereby keeping the

scrollbars accessible. When the app bar is hidden and afterhide fires, you can then readjust the

layout. Always use a run-time value like clientHeight in these calculations as well, because it

accommodates different resolution scales, where the values could be slightly different, and also

because the height of an app bar can vary with commands and with view states.

To show this, Scenario 6 of the sample has a horizontally panning ListView control that normally

occupies most of the page; a scrollbar will appear along the very bottom when the mouse is used. If

you select an item, the app bar is made sticky and then shown (see the doSelectItem function in

js/appbar-listview.js):

appBar.sticky = true;

appBar.show();

The show method triggers both beforeshow and aftershow events. To adjust the layout, the

appropriate event to use is aftershow, which makes sure the height of the app bar is valid. The sample

handles this event in function called doAppBarShow (also in appbar-listview.js):

function doAppBarShow() {

 var listView = document.getElementById("scenarioListView");

 var appBar = document.getElementById("scenarioAppBar");

 var appBarHeight = appBar.offsetHeight;

 // Move the scrollbar into view if appbar is sticky

 if (appBar.winControl.sticky) {

 var listViewTargetHeight = "calc(100% - " + appBarHeight + "px)";

 var transition = {

 property: 'height',

 duration: 367,

 timing: "cubic-bezier(0.1, 0.9, 0.2, 0.1)",

 to: listViewTargetHeight

 };

 WinJS.UI.executeTransition(listView, transition);

 }

}

Note The sample on the Windows Developer Center uses beforeshow instead of aftershow, with the

result that sometimes the app bar still has a zero height and the layout is not adjusted properly. To

guarantee that the app bar has its proper height for such calculations, use the aftershow event as

demonstrated in the modified sample included with this chapter’s companion content.

Here you can see that the appBar.offsetHeight value is simply subtracted from the ListView’s

height with an animated transition. (See Chapter 11, “Purposeful Animations.”) The operation is

reversed in doAppBarHide where the ListView height is simply reset to 100% with a similar animation.

In this case, the event handler doesn’t depend on the app bar’s height at all, so it can use either

268

beforehide or afterhide events. If, on the other hand, you need to know the size of the app bar for

your own layout, use the beforehide event.

As an exercise, run Scenario 7 of the SDK sample. Notice how the bottom part of the text region’s

vertical scrollbar is obscured by the sticky app bar. Try taking some of the code from Scenario 6 to

handle aftershow and beforehide to adjust the text area’s height to accommodate the app bar and

keep the scrollbar completely visible. And no, I won’t be grading you on this quiz: the solution is

provided in the modified sample with this chapter.

Showing, Hiding, Enabling, and Updating Commands

In the previous section I mentioned using the beforeshow event to configure an app bar’s commands

property such that it contains those commands appropriate to the current page and the page state.

This might include setting the disabled property for specific commands that are, for example,

dependent on selection state. This can be done through the commands array, in markup, or again by

using the app bar’s getCommandById method:

appbar.getCommandById("cmdAdd").disabled = true;

Let me reiterate that the commands that appear on an app bar are specific to each page; it’s not

necessary to try to maintain a consistent app bar structure across pages. That is, if a command would

always be disabled for a particular page, don’t bother showing it at all. What’s more important is that

the app bar for a page is consistent, because it’s a really bad idea to have commands appear and

disappear depending on the state of the page. That would leave users guessing at how to get the page

in the right state for certain commands to appear!

Speaking of changes, it is entirely allowable to modify or update a command at run time, which can

eliminate the need to create multiple commands that your alternately show or hide. Since each

command on the app bar is just a DOM element, you can really make any changes you want at any

time. An example of this is shown in Scenario 3 of the sample where the app bar is initially created with

a Play button (custom-icons.html):

<button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'cmdPlay', label:'Play', icon:'play', tooltip:'Play this song'}">

</button>

This button’s click handler uses the doClickPlay function in js/custom-icons.js to toggle between

states:

var isPaused = true;

function doClickPlay() {

 var cmd = document.getElementById('cmdPlay');

 if (!isPaused) {

 isPaused = true; // paused

 cmd.winControl.icon = 'play';

 cmd.winControl.label = 'Play';

 cmd.winControl.tooltip = 'Play this song';

269

 } else {

 isPaused = false; // playing

 cmd.winControl.icon = 'pause';

 cmd.winControl.label = 'Pause';

 cmd.winControl.tooltip = 'Pause this song';

 }

}

Again, the button is just an element in the DOM and updating any of its properties, including styles,

will update the element on the screen once you return control to the UI thread.

Now using beforeshow for the purpose of adjusting your commands is certainly effective, but you

can accomplish the same goal in other ways. The strategy you use depends on the architecture of your

app as well as personal preference. From the user’s point of view, so long as the appropriate

commands are available at the right time, it doesn’t really matter how the app gets them there!

Thinking through your approach is especially important when dealing with snapped view, because

the recommendation is that you have ten commands or fewer so that the app bar fits on one or two

rows. This means that you will want to think through how to adjust the app bar for different view

states, perhaps combining multiple commands into a popup menu on a single button.

One approach is to have each page in the app declare and handle its own app bar, which includes

pages that create app bars on the fly within their ready methods. This makes the relationship between

the page content and the app bar very clear and localized. The downside is that common

commands—those that appear on more than one page—end up being declared multiple times,

making them more difficult to maintain and certainly inviting small inconsistencies like ants to sugar.

Nevertheless, if you have very distinct content in your various pages and few common commands, this

approach might be the right choice. It is also necessary if your app uses multiple top-level pages rather

than one page with page controls, as we discussed in Chapter 3, “App Anatomy and Page Navigation,”

because each HTML page has to declare its own app bar anyway.

For apps using page controls, another approach is to declare a single app bar in the top-level page

and set its commands property within each page control’s ready method. The drawback here is that

because commands is a write-only property, you can’t declare your common commands in HTML and

append your page-specific commands later on, unless you go through the trouble of creating each

individual AppBarCommand child element within each ready method. This kind of code is both tedious

to write and to maintain.

Fortunately, there is a third approach that allows you to define a single app bar in your top-level

page that contains all of your commands, for all of your pages, and then selectively show certain sets

of those commands within each page’s ready method. This is the purpose of the app bar’s

showCommands, hideCommands, and showOnlyCommands methods.

All three of these methods accept an array of commands, which can be either AppBarCommand

objects or command id’s. showCommands makes those commands visibl, and can be called multiple

times with different sets for a cumulative result. On the opposite side, hideCommands hides the

specified commands in the app bar, again with cumulative effects. The basic usage of these methods is

270

demonstrated in Scenario 4 of the sample.

showOnlyCommands then combines the two, making specific commands visible while hiding all

others. If you declare an app bar with all your commands, you can use showOnlyCommands within each

page’s ready method to quickly and easily adjust what’s visible. The trick is obtaining the appropriate

array to pass to the method. You can, of course, hard-code commands into specific arrays, as Scenario

4 of the sample does for showCommands and hideCommands. However, if you’re thinking that this is A

Classic Bad Idea, you’re thinking like I’m thinking! Such arrays mean that any changes you make to app

bar must happen in both HTML and JavaScript file, meaning that anyone having to maintain your code

in the future will surely curse your name!

A better path to happiness and long life is thus to programmatically obtain the necessary arrays

from the DOM, using the extraClass property on each command to effectively define command sets.

This enables you to call querySelectorAll to retrieve those commands that belong to a particular set.

Consider the following app bar definition, where for the sake of brevity I’ve omitted properties like

label, icon, and section, as well as any other styling classes:

<div id="appbar" data-win-control="WinJS.UI.AppBar" data-win-options="{

 commands:[

 {id:'home', extraClass: 'menuView gameView scoreView'},

 {id:'play', extraClass: 'menuView gameView scoreView'},

 {id:'rules', extraClass: 'menuView gameView scoreView'},

 {id:'scores', extraClass: 'menuView gameView scoreView'},

 {id:'newgame', extraClass: 'gameView gameSnapView'},

 {id:'resetgame', extraClass: 'gameView gameSnapView'},

 {id:'loadgame', extraClass: 'gameView gameSnapView'},

 {id:'savegame', extraClass: 'gameView gameSnapView'},

 {id:'hint', extraClass: 'gameView gameSnapView'},

 {id:'timer', extraClass: 'gameView gameSnapView'},

 {id:'pause', extraClass: 'gameView gameSnapView'},

 {id:'home2', extraClass: 'gameSnapView'},

 {id:'replaygame', extraClass: 'scoreView'},

 {id:'resetscores', extraClass: 'scoreView'}

]}">

</div>

In the extraClass properties we’ve defined four distinct sets: menuView, gameView,

gameSnapView, and scoreView. With these in place, a simple call to querySelectorAll provides exactly

the array we need for showOnlyCommands. A generic function like the following can then be used from

within each page’s ready method (or elsewhere) to activate commands for a particular view:

function updateAppBar(view) {

 var appbar = document.getElementById("appbar").winControl;

 var commands = appbar.element.querySelectorAll(view);

 appbar.showOnlyCommands(commands);

}

With this approach, credit for which belongs to my colleague Jesse McGatha, the app bar is wholly

defined in a single location, making it very easy to manage and maintain.

271

App Bar Styling
The extraClass property for commands can, of course, be used for styling purposes as well as

managing command sets. It’s very simple: whatever classes you specify in extraClass are added to the

AppBarCommand controls created for the app bar.

There are also seven WinJS style classes utilized by the app bar, as described in the following table,

where the first two apply to the app bar as a whole and the other five to the individual commands:

CSS class (app bar) Description

win-appbar Styles the app bar container; typically this style is used as a

root for more specific selectors.

win-commandlayout Styles the app bar commands layout; apps generally don’t

modify this style at all.

CSS class (commands) Description

win-command Styles the entire AppBarCommand.

win-commandicon Styles the icon box for the AppBarCommand.

win-commandimage Styles the image for the AppBarCommand.

win-commandring Styles the icon ring for the AppBarCommand.

win-label Styles the label for the AppBarCommand.

Hint To help yourself styling an app bar in Blend, make it sticky or add a call to show in your page’s

ready method or your app’s activated event. This makes sure that the app bar is visible and

navigable in Blend; it can otherwise be difficult to get the app bar to show within the tool.

Generally speaking, you don’t need to override the win-appbar or win-commandlayout styles

directly; instead, you should create selectors for a custom class related to these and then style the

particular pieces you need. This can include pseudo-selectors like button:hover, button:active, and

so forth.

Scenario 2 of the HTML Appbar Control sample shows many such selectors in action, in this case to

set the background of the app bar and its commands to blue and the foreground color to green (a

somewhat hideous combination, but demonstrative nonetheless).

As a basis, Scenario 2 (html/custom-color.html) adds a CSS class customColor to the app bar:

<div id="customColorAppBar" data-win-control="WinJS.UI.AppBar" class="customColor" ...>

272

In css/custom-color.css it then styles selectors based on .win-appbar.customColor. The following

rules, for instance, set the overall background color, the label text color, and the color of the circle

around the commands for the :hover and :active states:

.win-appbar.customColor {

 background-color: rgb(20, 20, 90);

}

.win-appbar.customColor .win-label {

 color: rgb(90, 200, 90);

}

.win-appbar.customColor button:hover .win-commandring,

.win-appbar.customColor button:active .win-commandring {

 background-color: rgba(90, 200, 90, 0.13);

 border-color: rgb(90, 200, 90);

}

All of this styling, by the way, applies only to the standard command-oriented layout. If you’re using

a custom layout, the app bar just contains whatever elements you want with whatever style classes you

want, so you just handle styling as you would any other HTML.

Custom Icons

Earlier we saw that the icon property of an AppBarCommand typically comes from the Segoe UI Symbol

font. Although this is suitable for most needs, you might want at times to use a character from a

different font (some of us just can’t get away from Wingdings!) or to provide custom graphics. The app

bar supports both.

To use a different font for the whole app bar, simply add a class to the app bar and create a rule

based on win-appbar:

win-appbar.customFont {

 font-family: "Wingdings";

}

To change the font of a specific command button, add a class to its extraClass property (such as

customButtonFont) and create a rule with the following selector (as used in Scenario 1 of the modified

sample):

button.customButtonFont .win-commandimage {

 font-family: "Wingdings";

}

To provide graphics of your own, do the following for a 100% resolution scale:

 Create a 160x80 pixel png sprite image with a transparent background, saving the file

with the .scale-100 suffix in the filename.

 This sprite is divided into two rows of four columns—that is, 40x40 pixel cells. The top

row is for the light styling theme, and the bottom is for the dark theme.

 Each row has four icons for the following button states, in this order from left to right:

273

default (rest), hover, pressed (active), and disabled.

 Each image is centered in its respective 40x40 cell, but remember that a ring will be

drawn around the icon, so generally keep the image in the 20–30 pixel range vertically

and horizontally. It can be wider or taller in the middle areas, of course, where the ring

is widest.

For other resolution scales, multiple the sizes by 1.4 (140%) and 1.8 (180%) and use the .scale-140

and .scale-180 suffixes in the image filename.

To use the custom icon, point the command’s icon property to the base image URI (without the

.scale-1x0 suffixes)—for instance, icon: 'url(images/icon.png)'.

Scenario 3 of the HTML Appbar Control sample demonstrates custom icon graphics for an Accept

button:

The icon comes from a file called accept.png, which appears something like this—I’ve adjusted the

brightness and contrast and added a border so that you can see each cell clearly:

The declaration for the app bar button then appears as follows (some properties omitted for

brevity):

<button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'cmdAccept', label:'Accept', icon:'url(images/accept.png)' }">

Note that although the sample doesn’t have variations of the icon for resolution scales, it does

provide variants for high contrast themes, an important accessibility consideration that we’ll come back

to in Chapter 17. For this reason, the button element includes

style="-ms-high-contrast-adjust:none" to override automatic adjustments for high contrast.

Command Menus
The next aspect of an app bar we need to explore in a little more depth are those commands whose

274

type property is set to flyout. In this case the command’s flyout property must identify a

WinJS.UI.Flyout object or a WinJS.UI.Menu control (which is a flyout). As noted before, flyout/popup

menus like this are used when there are too many related commands cluttering up the basic app bar,

or when you need other types of controls that aren’t quite appropriate on the app bar itself. It’s said,

though, that if you’re tempted to use a button labeled “More”, “Advanced”, or “Other Stuff” because

you can’t figure out how to organize the commands otherwise, it’s a good sign that the app itself is too

complex! Seek ways to simplify the app’s purpose so that the app bar doesn’t just become a repository

for randomness.

We’ll be covering flyouts more fully a little later in this chapter, but let’s see how to use one in an

app bar, as demonstrated in Scenario 6 of the HTML Flyout Control sample (not the app bar sample,

mind you!):

In html/appbar-flyout.html of this sample we see the app bar button declared as follows:

<button data-win-control="WinJS.UI.AppBarCommand"

 data-win-options="{id:'respondButton', label:'Respond', icon:'edit', type:'flyout',

 flyout:'respondFlyout'}">

The respondFlyout element identified here is defined earlier in html/appbar-flyout.html; note that

such an element must be declared prior to the app bar to make sure it’s instantiated before the app bar

is created:

<div id="respondFlyout" data-win-control="WinJS.UI.Menu">

 <button data-win-control="WinJS.UI.MenuCommand" data-win-options="{id:'alwaysSaveMenuItem',

 label:'Always save drafts', type:'toggle', selected:'true'}">

 </button>

 <hr data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'separator', type:'separator'}" />

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'replyMenuItem', label:'Reply'}">

 </button>

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'replyAllMenuItem', label:'Reply All'}">

 </button>

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'forwardMenuItem', label:'Forward'}">

 </button>

275

http://code.msdn.microsoft.com/windowsapps/Flyout-sample-258757b3

</div>

It should come as no surprise by now that the menu is just another WinJS control, WinJS.UI.Menu,

where its child elements define the menu’s contents. As all these elements are, once again, just

elements in the DOM; their click events are wired up in js/appbar-flyout.js with the ever-present

addEventListener. (Again, the sample uses document.getElementById to obtain the elements in

order to call addEventListener; it would be more efficient to use the app bar’s getCommandById

method instead as in the modified app bar sample.)

Each menu item, as you can see, is a WinJS.UI.MenuCommand object, and we’ll come back to the

details later—for the time being, you can see that those items have an id, a label, and a type, very

similar to WinJS.UI.AppBarCommand objects.

That’s pretty much all there is to it—the one added bit is that when a menu item is selected, you’ll

want to dismiss the menu and perhaps also the app bar (if it’s not sticky). This is shown in the sample

within js/appbar-flyout.js in a function called hideFlyoutAndAppBar:

function hideFlyoutAndAppBar() {

 document.getElementById("respondFlyout").winControl.hide();

 document.getElementById("appBar").winControl.hide();

}

Custom App Bars and Navigation Bars
All this time we’ve been looking at the standard commands layout of the app bar, which is of course

the simplest way to use the control. There will be times, however, when the standard commands layout

isn’t sufficient. Perhaps you want to place more interesting controls on the app bar, especially custom

controls (like a color selector). For this you set the app bar’s layout property to 'custom' and place

whatever HTML you want within the app bar control, styling it with CSS, and wiring up whatever events

you need in JavaScript.

A custom layout is also typically used to implement a top navigation bar—that is, the app bar with

placement set to 'top'—because command buttons aren’t usually the UI you want. We saw an

example earlier in the Weather app, and the navigation bar of Internet Explorer provides another:

Our good friend the HTML Appbar Control sample again delivers an example of custom layout, in

Scenario 5. In html/custom-layout.html we see the markup for a custom top app bar containing

arbitrary elements:

<div id="customLayoutAppBar" data-win-control="WinJS.UI.AppBar" aria-label="Navigation Bar"

 data-win-options="{layout:'custom', placement:'top'}">

 <header aria-label="Navigation bar" role="banner">

276

 <button id="cmdBack" class="win-backbutton" aria-label="Back">

 </button>

 <div class="titleArea">

 <h1 class="win-type-xx-large" tabindex="0">

 Page Title</h1>

 </div>

 </header>

</div>

Admittedly, the result of this example is a little odd—it creates a navigation bar with a typical page

header with a back button where each control might have a focus rectangle. I don’t recommend

following this design!

As mentioned in the “Tips and Tricks” section in Chapter 4 (under “Control Styling”), you can

suppress the focus rectangle with a <selector>:focus { outline: none; } rule in CSS. To remove it

from the back button, for example, you can add the style to the following rule in custom-layout.css:

.win-appbar header .win-backbutton {

 margin-left: 39px;

 margin-top: 59px;

 outline: none;

}

Notice again how this rule and the others in css/custom-layout.css all use the win-appbar class as a

base selector but only because it’s styling other generic classes like header and win-backbutton. If you

use specific classes in your app bar or navigation bar, you really don’t need the win-appbar selector at

all.

To implement a navigation bar like that of Internet Explorer or the Weather app, you can certainly

use a ListView control along with item templates or custom item rendering functions, where you’d wire

up itemInvoked events to WinJS.Navigation.navigate and so forth. Again, there’s nothing

particularly special or complicated here: with a custom layout, the app bar is really just a flyout

container for other HTML elements.

Flyouts and Menus

Going back to our earlier discussion about where to place commands, a flyout

control—WinJS.UI.Flyout—is used for confirmations, collecting information, and otherwise

answering questions in response to a user action. The menu control—WinJS.UI.Menu—is then a

particular kind of flyout that contains WinJS.UI.MenuCommand controls rather than arbitrary HTML. In

fact, WinJS.UI.Menu is directly derived from WinJS.UI.Flyout using WinJS.Class.define, so they

277

share much in common. As flyouts, they also share some feature in common with the app bar. (Both

the app bar and the flyout classes are themselves derived from a WinJS.UI._Overlay base class that is

internal to WinJS.)

Before we look at the details, let’s see a number of visual examples from the HTML Flyout Control

sample where we already saw a popup menu on an app bar command. The WinJS.UI.Flyout controls

used in Scenarios 1–4 are shown in Figure 7-1. Notice the variance of content in the flyout itself and

how the flyout is always positioned near the control that invoked it, such as the Buy, Login, and Format

output text buttons, and the Lorem ipsum hyperlink text. These examples illustrate that a flyout can

contain a simple message with a button (Scenario 1, for warnings and confirmations), can contain fields

for entering information or changing settings (Scenarios 2 and 3), and can have a title (Scenario 4).

Scenario 5, for its part, contains the example of a popup header menu with WinJS.UI.Menu that we’ll

see a little later.

Figure 7-1 Examples of flyout controls from the HTML Flyout control sample.

There are two key characteristics of flyout controls, including menus. One is that flyouts can be

dismissed programmatically, like an app bar, when an appropriate control within the flyout is invoked.

This is the case with the Complete Order button of Scenario 1 and the Login button of Scenario 2.

The second characteristic, also shared with the app bar, is the light dismiss behavior: clicking or

tapping outside the control dismisses it, as does the ESC key, which means light dismiss is the

equivalent of pressing a Cancel or Close button in a traditional dialog box. The benefit here is that we

don’t need a visible button for this purpose, which helps simplify the UI. At the same time, notice in

Scenario 3 of Figure 7-1 that there is no OK button or other control to confirm changes you might

make in the flyout. With this particular design, changes are immediately applied such that dismissing

278

http://code.msdn.microsoft.com/windowsapps/Flyout-sample-258757b3
http://code.msdn.microsoft.com/windowsapps/Flyout-sample-258757b3

the flyout does not reverse or cancel them. If you don’t want that kind of behavior, you can place

something like an Apply button on the flyout and not make changes until that button is pressed. In this

case, dismissing the flyout would cancel the changes.

I’ll again encourage you to read the Guidelines and checklist for Flyouts topic that goes into detail

about how and when to use the different designs that are possible with this control. It also outlines

when not to use the control: for example, to surface errors not related to user action (use a message

dialog instead), for primary commands (use the app bar), for text selection context menus, and for UI

that is part of a workflow and should be directly on the app canvas. These guidelines also suggest

keeping a flyout small and focused (omitting unnecessary controls) and making sure a flyout is

positioned close to the object that invoked it. Let’s now see how that works in the code.

Note In addition to apps that display a WinJS.UI.Flyout on their own, some system APIs (such as

that to create a secondary tile) create a system flyout. In these cases, the app will receive a blur event,

which will cause any light dismiss app bars to be dismissed. To prevent this, set the app bar to sticky

when using those APIs.

WinJS.UI.Flyout Properties, Methods, and Events
Most of the properties, methods, and events of the WinJS.UI.Flyout control are exactly the same as

we’ve already seen for the app bar. The show and hide methods control its visibility, a hidden property

indicates its visible state, and same the beforeshow, aftershow, beforehide, and afterhide events fire

as appropriate. The afterhide event is typically used to detect dismissal of the flyout.

Like the app bar, the flyout also has a placement property, but it has different values that are only

meaningful in the context of the flyout’s alignment and anchor properties. In fact, all three properties

are optional parameters to the show method because they determine where, exactly, the flyout appears

on the screen; the default placement and alignment can also be set on the control itself because these

are optional with show. (Note also that if you don’t specify an anchor in the show method; the anchor

property must already be set on the control or show will throw an exception.)

The anchor property identifies the control that invokes the flyout or whatever other operation

might bring up a flyout (as for confirmation). The placement property then indicates how the flyout

should appear in relation to the anchor, and the property can contain 'top', 'bottom', 'left',

'right', or 'auto' (the default). Typically, you use a specific placement only if you don’t want the

flyout to possibly obscure important content. Otherwise, you run the risk of the flyout element being

shrunk down to fit the available space. The flyout’s content will remain the same size, mind you, so it

means that—ick!—you’ll get scrollbars! So, unless you have a really good reason and a note from your

doctor, stick with 'auto' placement so that the control will be placed where it can be shown full size.

Along these same lines, remember that in snapped view you have only 320 horizontal pixels to work

with, meaning that flyouts you show in that view state should be that size or smaller.

The alignment property, for its part, when used with a placement of 'top' or 'bottom', determines

how the flyout aligns to the edge of the anchor: 'left', 'right', or 'center' (the default). The

279

http://msdn.microsoft.com/en-us/library/windows/apps/hh465341
http://msdn.microsoft.com/en-us/library/windows/apps/br211726.aspx

content of the flyout itself is aligned through CSS as with any other HTML.

If you need to style the flyout control itself, you can set styles in the win-flyout class, like fonts,

default alignments, margins, and so on. As with other WinJS style classes like this, it’s best to use

win-flyout as a basis for more specific selectors unless you really want to style every flyout in the app.

Typically, in fact, you also exclude win-menu from the rule so that menu flyouts aren’t affected by such

styling. For example, most of the scenarios in the HTML Flyout control sample, which we’ll be looking

at next, have rules like this:

.win-flyout:not(.win-menu) button,

.win-flyout:not(.win-menu) input[type="button"] {

 margin-top: 16px;

 margin-left: 20px;

 float: right;

}

Flyout Examples
A flyout control is created like any other WinJS control with data-win-control and data-win-options

attributes and processed by WinJS.UI.process/processAll. Flyouts with relatively fixed content will

typically be declared in markup where you can use data binding on specific properties of the elements

within the flyout. Flyouts that are very dynamic, on the other hand, can be created directly from code

by using new WinJS.UI.Flyout(<element>, <options>), and you can certainly change its child

elements at any time. It’s all just part of the DOM! (Am I repeating myself?)

Like I said before (apparently I am repeating myself), a WinJS.UI.Flyout control can contain

arbitrary HTML, styled, as always, with CSS. The flyout for Scenario 1 in the sample appears as follows in

html/confirm-action.html (condensed slightly):

<div id="confirmFlyout" data-win-control="WinJS.UI.Flyout" aria-label="{Confirm purchase flyout}">

 <div>Your account will be charged $252.</div>

 <button id="confirmButton">Complete Order</button>

</div>

The login flyout in Scenario 2 is similar, and it even employs an HTML form to attach the Login

button to the Enter key (html/collect-information.html):

<div id="loginFlyout" data-win-control="WinJS.UI.Flyout" aria-label="{Login flyout}">

 <form onsubmit="return false;">

 <p>

 <label for="username">Username
</label>

 <input type="text" id="username" />

 </p>

 <p>

 <label for="password">Password
</label>

 <input type="password" id="password" />

 </p>

 <button id="submitLoginButton">Login</button>

280

 </form>

</div>

The flyout is displayed by calling its show method. In Scenario 1, for instance, the button’s click

event is wired to the showConfirmFlyout function (js/confirm-action.js), where the Buy button is given

as the anchor element. Handling the Complete Order button just happens through a click handler

attached to that element, and here we want to make sure to call hide to programmatically dismiss the

flyout. Finally, the afterhide event is used to detect dismissal:

var bought;

var page = WinJS.UI.Pages.define("/html/confirm-action.html", {

 ready: function (element, options) {

 document.getElementById("buyButton").addEventListener("click", showConfirmFlyout, false);

 document.getElementById("confirmButton").addEventListener("click", confirmOrder, false);

 document.getElementById("confirmFlyout").addEventListener("afterhide", onDismiss, false);

 }

function showConfirmFlyout() {

 bought = false;

 var buyButton = document.getElementById("buyButton");

 document.getElementById("confirmFlyout").winControl.show(buyButton);

}

// When the Buy button is pressed, hide the flyout since the user is done with it.

function confirmOrder() {

 bought = true;

 document.getElementById("confirmFlyout").winControl.hide();

}

// On dismiss of the flyout, determine if it closed because the user pressed the buy button.

// If not, then the flyout was light dismissed.

function onDismiss() {

 if (!bought) {

 // (Sample displays a dismissal message on the canvas)

 }

}

Handling the login controls in Scenario 2 is pretty much the same, with some added code to make

sure that both a username and password have been given. If not, the Login button handler displays an

inline error and sets the focus to the appropriate input field:

281

As the flyout of Scenario 2 is a little larger, the default placement of 'auto' on a 1366x768 display

(as in the simulator) makes it appear below the button that invokes it. There isn’t quite enough room

above that button. So try setting placement to 'top' in the call to show:

function showLoginFlyout() {

 // ...

 document.getElementById("loginFlyout").winControl.show(loginButton, "top");

}

Then you can see how the flyout gets scrollbars because the overall control element is too short:

What was that word I used before? “Ick”?

To move on, Scenario 3 again declares a flyout in markup, where it contains some label, select,

and input controls. In JavaScript, though, it listens for change events on the latter and applies those

new values to the output element on the app canvas:

var page = WinJS.UI.Pages.define("/html/change-settings.html", {

 ready: function (element, options) {

 // ...

 document.getElementById("textColor").addEventListener("change", changeColor, false);

 document.getElementById("textSize").addEventListener("change", changeSize, false);

282

 }

 });

// Change the text color

function changeColor() {

 document.getElementById("outputText").style.color = document.getElementById("textColor").value;

}

// Change the text size

function changeSize() {

 document.getElementById("outputText").style.fontSize =

 document.getElementById("textSize").value + "pt";

}

If this flyout were written to have an Apply button rather than applying the changes immediately, its

click handler would obtain the current selection and slider values and use them like changeColor and

changeSize do.

Finally, in Scenario 4 we see a flyout with a title, which is just a piece of larger text in the markup;

the flyout control itself doesn’t have a separate notion of a header:

<div id="moreInfoFlyout" data-win-control="WinJS.UI.Flyout" aria-label="{More info flyout}">

 <div class="win-type-x-large">Lorem Ipsum</div>

 <div>

 Lorem Ipsum is text used as a placeholder by designers...

 </div>

</div>

The point of this last example is to show that unlike traditional desktop dialog boxes, flyouts don’t

often need a title because they already have context within the app itself. Dialog boxes in desktop

applications need titles because that’s what appears in task-switching UI, especially for modal dialogs.

Hint If you find that beforeshow, aftershow, beforehide, or afterhide events triggered from a

flyout are getting propagated to a containing app bar, which shares the same event names, include a

call to eventArgs.stopPropagation inside your flyout’s handler.

Menus and Menu Commands
What distinguishes a WinJS.UI.Menu control from a more generic WinJS.UI.Flyout is that a menu

expects that all its child elements are WinJS.UI.MenuCommand objects, similar to how the standard

command layout of the app bar expects AppBarCommand objects (and won’t instantiate if you declare

something else). In fact, the menu control shares other characteristics with the app bar as well as the

flyout, such as:

 show and hide methods.

 getCommandById, showCommands, hideCommands, and showOnlyCommands, along with the

commands property, meaning that you can use the same strategies to manage

commands as discussed in “Showing, Hiding, Enabling, and Updating Commands” in

283

http://msdn.microsoft.com/en-us/library/windows/apps/hh700879.aspx

the app bar section, including specifying commands using a JSON array rather than

discrete elements.

 beforeshow, aftershow, beforehide, and afterhide events.

 anchor, alignment, and placement properties.

The menu also has two styles for its appearance—win-menu and win-command—that you use to

create more specific selectors, as we’ve seen, for the entire menu and for the individual text commands.

MenuCommand objects are also very similar to AppBarCommand objects. Both share many of the same

properties: id, label, type ('button', 'toggle', 'flyout', and 'separator'), disabled, extraClass,

flyout, hidden, onclick, and selected. Menu commands do not have icons, sections, and tooltips but

you can see from type that menu items can be buttons (including just text items), checkable items,

separators, and also another flyout. In the latter case, the secondary menu will replace the first rather

than show up alongside, and to be honest, I’ve yet to see secondary menus used in a real app. Still, it’s

supported in the control!

We’ve already seen how to use a flyout menu from an app bar command, which is covered in

Scenario 6 of the HTML Flyout controls sample (see the earlier “Command Menus” section). Another

primary use case is to provide what looks like drop-down menu from a header element, covered

Scenario 5. Here (see html/header-menu.html), the standard design is to place a down chevron symbol

() at the end of the header:

<header aria-label="Header content" role="banner">

 <button class="win-backbutton" aria-label="Back"></button>

 <div class="titlearea win-type-ellipsis">

 <button class="titlecontainer">

 <h1>

 Music

 

 </h1>

 </button>

 </div>

</header>

Notice that the whole header is wrapped in a button, so its click handler can display the menu

with show:

document.querySelector(".titlearea").addEventListener("click", showHeaderMenu, false);

function showHeaderMenu() {

 var title = document.querySelector("header .titlearea");

 var menu = document.getElementById("headerMenu").winControl;

 menu.anchor = title;

 menu.placement = "bottom";

 menu.alignment = "left";

 menu.show();

}

The flyout (defined as headerMenu in html/header-menu.html) appears when you click anywhere

284

on the header (not just the chevron, as that’s just a character in the header text):

The individual menu commands are just button elements themselves, so you can attach click

handlers to them as you need. As with the app bar, it’s best to use the menu control’s getCommandById

to locate these elements as it’s much more efficient than document.getElementById (as the SDK

sample uses…sigh).

To see a secondary menu in action, try adding the following secondaryMenu element in

html/header-menu.html before the headerMenu element and adding a button within headerMenu

whose flyout property refers to secondaryMenu:

<div id="secondaryMenu" data-win-control="WinJS.UI.Menu">

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'command1', label:'Command 1'}"></button>

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'command2', label:'Command 2'}"></button>

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'command3', label:'Command 3'}"></button>

</div>

<div id="headerMenu" data-win-control="WinJS.UI.Menu">

 <!-- ... -->

 <button data-win-control="WinJS.UI.MenuCommand"

 data-win-options="{id:'showFlyout', label:'Show secondary menu',

 type:'flyout', flyout:'secondaryMenu'}">

 </button>

</div>

Also, go into css/header-menu.css and adjust the width style of #headerMenu to 200px. With these

changes, the first menu will appear as follows where the color change in the header is the hover effect:

When you select Show secondary menu, the first menu will be dismissed and the secondary one will

285

appear in its place:

Just to note, another example of a header flyout menu can be found in the Adaptive layout sample

we saw in Chapter 6, “Layout.” It’s implemented the same way we see above, with the added detail that

it actually changes the page contents in response to a selection.

Context Menus

Besides the flyout menu that we’ve seen so far, there are also context menus as described in Guidelines

and checklist for context menus. These are specifically used for commands that are directly relevant to

a selection of some kind, like clipboard commands for text, and are invoked with a right mouse click on

that selection, a tap, or the context menu key on the keyboard. Text and hyperlink controls already

provide these by default. Context menus are also good for providing commands on objects that

cannot be selected (like parts of an instant messaging conversation), as app bar commands can’t be

contextually sensitive to such items. They’re also recommended for actions that cannot be

accomplished with a direct interaction of some kind. However, don’t use them on page

backgrounds—that’s what the app bar is for because the app bar will automatically appear with a

right-click gesture.

Hint If you process the right mouse button click event for an element, be aware that the default

behavior that shows the app bar will be suppressed over that element. Therefore, use the right-click

event judiciously, because users will become accustomed to right-clicking around the app to bring up

the app bar. Note also that you can programmatically invoke the app bar yourself using its show

method.

The Context menu sample gives us some context here—I know, it’s a bad pun! In all cases, you need

only listen to the HTML contextmenu event on the appropriate element; you don’t need to worry

about mouse, touch, and keyboard separately. Scenario 1 of the sample, for instance, has a

nonselectable attachment element on which it listens for the event (html/scenario1.html):

document.getElementById("attachment").addEventListener("contextmenu", attachmentHandler, false);

In the event handler, you then create a Windows.UI.Popups.PopupMenu object (which comes from

WinRT, not WinJS!), populate it with Windows.UI.Popups.UICommand or UICommandSeparator objects

(that contain an item label and click handler), and then call the menu’s showAsync method

(js/scenario1.js):

function attachmentHandler(e) {

 var menu = new Windows.UI.Popups.PopupMenu();

286

http://msdn.microsoft.com/en-us/library/windows/apps/hh465308
http://msdn.microsoft.com/en-us/library/windows/apps/hh465308
http://code.msdn.microsoft.com/windowsapps/Context-menu-sample-40840351
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.popups.popupmenu.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.popups.uicommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.popups.uicommandseparator.aspx

 menu.commands.append(new Windows.UI.Popups.UICommand("Open with", onOpenWith));

 menu.commands.append(new Windows.UI.Popups.UICommand("Save attachment", onSaveAttachment));

 menu.showAsync({ x: e.clientX, y: e.clientY }).then(function (invokedCommand) {

 if (invokedCommand === null) {

 // The command is null if no command was invoked.

 }

 });

}

Notice that the results of the showAsync method (and the sample should be calling done and not

then here39) is the UICommand object that was invoked; you can examine its id property to take further

action. Also, the parameter you give to showAsync is a Windows.Foundation.Point object that

indicates where the menu should appear relative to the mouse pointer or the touch point. The menu is

placed above and centered on this point.

The PopupMenu object also supports a method called showForSelectionAsync, whose first

argument is a Windows.Foundation.Rect that describes the applicable selection. Again, the menu is

placed above and centered on this rectangle. This is demonstrated in Scenario 2 of the sample in

js/scenario2.js:

//In the contextmenu handler

menu.showForSelectionAsync(getSelectionRect()).then(function (invokedCommand) { //... }

//...

function getSelectionRect() {

 var selectionRect = document.selection.createRange().getBoundingClientRect();

 var rect = {

 x: getClientCoordinates(selectionRect.left),

 y: getClientCoordinates(selectionRect.top),

 width: getClientCoordinates(selectionRect.width),

 height: getClientCoordinates(selectionRect.height)

 };

 return rect;

};

This scenario also demonstrates that you can use a contextmenu event handler on text to override

the default commands that such controls otherwise provide.

A final note for context menus: because these are created with WinRT APIs and are not WinJS

controls, the menus don’t exist in the DOM and are not DOM-aware, which explains the use of other

WinRT constructs like Point and Rect. Such is also true of message dialogs, which is our final subject

for this chapter.

39 If you’re wondering why such consistencies exist, it’s because the done method didn’t originally exist and was introduced

mid-way during the production of Windows 8 when it became clear that we needed a better mechanism for surfacing

exceptions within chained promises. As a result, numerous SDK samples and code in the documentation still use then

instead of done when handling the last promise in a chain. It still works; it’s just that exceptions in the chain will be

swallowed, thus hiding possible errors.

287

http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.point.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.rect.aspx

Message Dialogs

Our last piece of commanding UI for this chapter is the message dialog. Like the context menu, this

flyout element comes not from WinJS but from WinRT via the Windows.UI.Popups.MessageDialog

API. Again, this means that the message dialog simply appears on top of the current page and doesn’t

participate in the DOM. Message dialogs automatically dim the app’s current page and block input

events from the app until the user responds to the dialog.

The Guidelines and checklist for message dialogs topic explains the use cases for this UI:

 To display urgent information that the user must acknowledge to continue, especially

conditions that are not related to a user command of some kind.

 Errors that apply to the overall app, as opposed to a workflow where the error is better

surfaced inline on the app canvas. Loss of network connectivity is a good example of

this.

 Questions that require user input and cannot be light dismissed like a flyout. That is, use

a message dialog to block progress when user input is essential to continue.

The interface for message dialogs is very straightforward. You create the dialog object with a new

Windows.UI.Popups.MessageDialog. The constructor accepts a required string with the message

content and an optional second string containing a title. The dialog also has content and title

properties that you can use independently. In all cases the strings support only plain text.

You then configure the dialog through its commands, options, defaultCommandIndex (the

command tied to the Enter key), and cancelCommandIndex (the command tied to the ESC key).

The options come from the Windows.UI.Popups.MessageDialogOptions enumeration where there

are only two members: none (the default, for no special behavior) and acceptUserInputAfterDelay

(which causes the message dialog to ignore user input for a short time to prevent possible clickjacking).

This exists primarily for Internet browsers loading arbitrary web content and isn’t typically needed for

most apps.

The commands property then contains up to three Windows.UI.Popups.UICommand objects, the same

ones used in context menus. Each command again contains an id, a label, and an invoked property

to which you assign the handler for the command. Note that the defaultCommandIndex and

cancelCommandIndex properties work on the indices of the commands array, not the id properties of

those commands. Also, if you don’t add any commands of your own, the message dialog will default to

a single Close command.

Finally, once the dialog is configured, you display it with a call to its showAsync method. Like the

context menu, the result is the selected UICommand object that’s given to the completed handler you

provide to the promise’s done method. Typically, you don’t need to obtain that result because the

selected command will have triggered its click event where you normally process those commands.

288

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.popups.messagedialog.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh738363.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.popups.uicommand.aspx

The Message dialog sample—one of the simplest samples in the whole Windows

SDK!—demonstrates various uses of this API. Scenario 1 displays a message dialog with a title and two

command buttons, setting the second command (index 1) as the default. This appears as follows:

Scenario 2 shows the default Close command with a message and no title:

Scenario 3 is identical to Scenario 1 but uses the completed handler of the showAsync().done

method to process the selected command.

Finally, Scenario 4 assigns the first command to be the default and marks the second as the cancel

command, so the message is dismissed with that command or the ESC key:

And that’s really all there is to it!

Improving Error Handling in Here My Am!

To complete this chapter and bring together much of what we’ve discussed, let’s make some changes

to Here My Am!, last seen in Chapter 3, to improve its handling of various error conditions.

As it stands right now, Here My Am! doesn’t behave very well in a few areas:

 If the Bing Maps control script fails to load from a remote source, the code in map.html

just throws an exception and the app terminates.

 If we’re using the app on a mobile device and have changed our location, there isn’t a

way to refresh the location on the map other than dragging the pin; that is, the

geolocation API is used only on startup.

 When WinRT’s geolocation API is trying to obtain a location without a network

connection, a several-second timeout period occurs, during which the user doesn’t have

289

http://go.microsoft.com/fwlink/?LinkId=231551
http://go.microsoft.com/fwlink/?LinkId=231551

any idea what’s happening.

 If our attempt to use WinRT’s geolocation API fails, typically due to timeout or network

connectivity problems but also possibly due to a denial of user consent, there isn’t any

way to try again.

The Here My Am! (7) app for this chapter addresses these concerns. First, I’ve added an error image

to the html/map.html file (the image is in html/maperror.png) so that a failure to load the Bing maps

script will display a message in place of the map:

I’ve also added a click handler to the image that reloads the iframe contents with document.-

location.reload(true). With this in place, I can remove the exceptions that were raised before when

the map couldn’t be created so that the app doesn’t terminate. Here’s how it looks if the map can’t be

created:

To test this, you need to disconnect from the Internet, uninstall the app (to clear any cached map

script; otherwise, it will continue to load!), and run the app again. It should hit the error case at the

beginning of the init method in map.html, which shows the error image by removing the default

display: none style and wiring up the click handler. Then reconnect the Internet and click the image,

and the map should reload, but if there are continued errors the error message will again appear.

The second problem—adding the ability to refresh our location—is easily done with an app bar. I’ve

added such a control to default.html with one command:

<div id="appbar" data-win-control="WinJS.UI.AppBar" data-win-options="">

 <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdRefreshLocation',

 label:'Refresh location', icon:'globe', section:'global', tooltip:'Refresh your location'}">

 </button>

</div>

This command is wired up within pages/home/home.js in the page control’s ready method:

290

var appbar = document.getElementById("appbar").winControl;

appbar.getCommandById("cmdRefreshLocation").addEventListener("click", this.tryRefresh.bind(this));

where the tryRefresh handler, also in the page control, hides the app bar and calls another new

method, refreshPosition, where I moved the code that obtains the geolocation and updates the

map):

tryRefresh: function () {

 //Hide the app bar and retry

 var appbar = document.getElementById("appbar").winControl.hide();

 this.refreshPosition();

},

I also needed to tweak the pinLocation function within html/map.html. Without a location refresh

command, this function was only ever called once on app startup. Since it can now be called multiple

times, we need to remove any existing pin on the map before adding one for the new location. This is

done with a call to map.entities.pop prior to the existing call to map.entities.push that pins the

new location.

The app bar now appears as follows, and we can refresh the location as needed. (If you aren’t on a

mobile device in your car, try dragging the first pin to another location and then refreshing to see the

pin return to your current location.)

For the third problem—letting the user know that geolocation is trying to happen—we can show a

small flyout message just before attempting to call the WinRT geolocator’s getGeopositionAsync call.

The flyout is defined in pages/home/home.html (our page control) to be centered along the bottom of

the map area itself:

<div id="retryFlyout" data-win-control="WinJS.UI.Flyout" aria-label="{Trying geolocation}"

 data-win-options="{anchor: 'map', placement: 'bottom', alignment: 'center'}">

 <div class="win-type-large">Attempting to obtain geolocation...</div>

</div>

The refreshPosition function in pages/home/home.js that we just added makes a great place to

show this just before calling getGeopositionAsync, and we can hide it within the completed and error

handlers:

refreshPosition: function () {

 document.getElementById("retryFlyout").winControl.show();

 var gl = new Windows.Devices.Geolocation.Geolocator();

 gl.getGeopositionAsync().done(function (position) {

 //...

 //Always hide the flyout

 document.getElementById("retryFlyout").winControl.hide();

291

 //...

 }, function (error) {

 //...

 //Always hide the flyout

 document.getElementById("retryFlyout").winControl.hide();

 });

},

Note that we want to hide the flyout inside the completed and error handlers so that the message

stays visible while the async operation is happening. If we placed a single call to hide outside these

handlers, the message would flash only very briefly before being dismissed, which isn’t what we want.

As we’ve written it, the user will have enough time to see the notice along the bottom of the map

(which can be dismissed if you click outside it):

The last piece is to notify the user when obtaining geolocation fails. We could do this with another

flyout with a Retry button, or with an inline message as below. We would not use a message dialog in

this case, however, because the message could appear in response to a user-initiated refresh action. A

message dialog might be allowable on startup, but with an inline message combined with the flyout

we already added we have all the bases covered.

For an inline message, I’ve added a floating div that’s positioned about a third of the way down on

top of the map. It’s defined in pages/home/home.html as follows, as a sibling of the map iframe:

<div id="locationSection" class="subsection" aria-label="Location section">

 <h2 class="group-title" role="heading">Location</h2>

 <iframe id="map" class="graphic" src="ms-appx-web:///html/map.html" aria-label="Map"></iframe>

 <div id="floatingError" class="win-type-x-large">Unable to obtain geolocation;

 use the app bar to try again.</div>

</div>

The styles for the #floatingError rule in pages/home/home.css provide for its placement and

appearance:

#floatingError {

 display: none;

 float: left;

 -ms-grid-column: 1;

 -ms-grid-row: 2;

 width: 100%;

 text-align: center;

 background-color: rgba(128, 0, 0, 0.5);

 -ms-grid-row-align: start;

 margin-top: 20%;

}

292

Because this is placed in the same grid cell as the map with float style, it appears as a nice overlay:

This message will appear if the user denies geolocation consent at startup or allows it but later uses

the Settings charm to deny the capability. You can use these variations to test the appearance of the

message. It’s also possible, if you run the app the first time without network connectivity, for this

message to appear on top of the map error image; this is why I’ve positioned the geolocation error

toward the top so that it doesn’t obscure the message in the image. But if you’ve successfully run the

app once and you then lose connectivity, the map should still get created because the Bing maps script

will have been cached.

With display: none in the CSS, the error message is initially hidden, as it should be. If we get to the

error handler for getGeolocationAsync, we set style.display to block, which reveals the element:

document.getElementById("floatingError").style.display = "block";

We again hide the message within the tryRefresh function, which is again invoked from the app

bar command, so that the message stays hidden unless the error persists:

tryRefresh: function () {

 document.getElementById("floatingError").style.display = "none";

 //...

},

One more piece we could add is a message dialog if we detect that we lost network connect and

thus couldn’t update our position. This could be done with the

Windows.Networking.NetworkInformation.onnetworkstatuschanged event, as we’ll see in Chapter

14, “Networking.” This is a case where a message dialog is appropriate as from the perspective of Here

My Am!, such a condition does not arise from direct user action.

Also, it’s worth noting that if we used the Bing Maps SDK control in this app, the script we’re

normally loading from a remote source would exist in our app package, so we’d eliminate the first

error case altogether. Because this is a good idea, we’ll make this change in the next revision of the

app.

293

http://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.connectivity.networkinformation.networkstatuschanged.aspx

What We’ve Just Learned

 In WinRT app design, commands that are essential to a workflow should appear on the

app canvas or on a popup menu from an element like a header. Those that can be

placed on the Setting charm should also go there; doing so greatly simplifies the overall

app implementation. Those commands that remain typically appear on an app bar or

navigation bar, which can contain flyout menus for some commands. Context menus

(Windows.UI.Popups.PopupMenu) can also be used for specific commands on content.

 The WinJS.UI.Flyout control is used for confirmations and other questions in response

to user action; they can also just display a message, collect additional information, or

provide controls to change settings for some part of the page. Flyouts are

light-dismissed, meaning that clicking outside the control or pressing ESC will dismiss it,

which is the equivalent of canceling the question.

 Message dialogs (Windows.UI.Popups.MessageDialog) are used to ask questions that

the user must answer or acknowledge before the app can proceed; a message dialog

disables the rest of the app. Message dialogs are best used for errors or conditions that

affect the whole app; error messages that are specific to page content should appear

inline.

 The app bar is a WinJS control on which you can place standard commands, using the

commands layout, or any HTML of your choice, using the custom layout. Custom icons

are also possible, using different fonts or custom graphics. An app can have both a top

and a bottom app bar, where the top is typically used for navigation and employs a

custom layout. App bars can be sticky to keep them visible instead of being

light-dismissed.

 The app bar’s showCommands, hideCommands, and showOnlyCommands methods, along

with the extraClass property of commands, make it easy to define an app bar in a

single location in the app and to selectively show specific command sets by using

querySelectorAll with a class that represents that set.

 Command menus, as appear from an app bar command or an on-canvas control of

some kind, are implemented with the WinJS.UI.Menu control.

 As an example of using many of these features, the Here My Am! app is updated in this

chapter to greatly improve its handling of various error conditions.

294

Chapter 8

State, Settings, Files, and

Documents

It would be very interesting when you travel if every hotel room you stayed in was automatically

configured exactly as how you like it—the right pillows and sheets, the right chairs, the right food in

the minibar rather than atrociously expensive and obscenely small snack tins. If you’re sufficiently

wealthy, of course, you can send people ahead of you to arrange such things, but such luxury remains

naught but a dream for most of us.

Software isn’t bound by such limitations, fortunately. Sending agents on ahead doesn’t involve

booking airfare for them, providing for their income and healthcare, and contributing to their

retirement plans. All it takes is a little connectivity, some cloud services, and voila! All of your settings

can automatically travel with you—that is, between the different devices you’re using.

This roaming experience, as it’s called, is built right into Windows 8 for systemwide settings such as

your profile picture, start screen preferences, Internet favorites, your desktop theme, saved credentials,

and so forth. When you use a Microsoft account to log into Windows, these settings are securely stored

in the cloud and automatically transferred to other Windows 8 devices where you use the same

account. I was pleasantly surprised during the development of Windows 8 that I no longer needed to

manually transfer all this data when I updated my machine from one release preview to another!

With such an experience in place for system settings, users will expect similar behavior from apps:

they will expect that app-specific settings on one device will appropriately roam to the same app

installed on other devices. I say “appropriately” because some settings don’t make sense to roam,

especially those that are particular to the hardware in the device. On the other hand, if I configure

email accounts in an app on one machine, I would certainly hope those show up on others! (I can’t tell

you how many times I’ve had to set up my four active email accounts in Outlook.) In short, as a user I’ll

expect that my transition between devices—on the system level and the app level—is both transparent

and seamless.

This means, then, that each app must do its part to manage its state, deciding what information is

local to a device, what data roams between devices (including roaming documents and other user data

through services like SkyDrive), and even what kinds of caching can help improve performance and

provide an good offline experience. As I’ve said with many such functional aspects, the effort you invest

in these can make a real difference in how users perceive your app and the ratings and reviews they’ll

give it in the Windows Store.

Many such settings will be completely internal to an app, but others can and should be directly

configurable by the user. In the past, this has given rise to an oft-bewildering array of nested dialog

295

boxes with multiple tabs, each of which is adorned with buttons, popup menus, and long hierarchies of

check boxes and radio buttons. As a result, there’s been little consistency in how apps are configured.

Even a simple matter of where such options are located has varied between Tools/Options,

Edit/Preferences, and File/Info commands, among others!

Fortunately, the designers of Windows 8 recognized that most apps have settings of some kind, so

they included Settings on the Charms bar alongside the other near-ubiquitous search, share, and

device functions. For one thing, this eliminates the need for users to remember where a particular app’s

settings are located, and apps don’t need to wonder how, exactly, to integrate settings into their

overall content flow and navigation hierarchy. That is, by being placed in the Settings charm, settings

are effectively removed from an app’s content structure, thereby simplifying the app’s overall design.

The app needs only to provide distinct pages that are displayed when the user invokes the charm, a

process that will give us our first taste of an activation path outside the primary launch of an app from

a tile.

Clearly, then, an app’s state and its Settings UI are intimately connected, as we will see in this

chapter. We’ll also have the opportunity to look at the storage and file APIs in WinRT, along with some

of the WinJS file I/O helpers and other storage options like IndexedDB.

Of course, app data—settings and internal state—is only one part of the story. User data—such as

documents, pictures, music/audio, and videos—is equally important. For these we’ll look at the various

capabilities in the manifest that allow an app to work with document and media libraries, as well as

removable storage, how to enumerate folder contents with queries, and how the file picker lets the

user give consent to other safe areas of the file system (but not system areas and the app data folders

of other apps).

Here, too, Windows 8 actually takes us beyond the local file system. The vast majority of data to

which a user has access today is not local to their machine but lives online. The problem here has been

that such data is typically buried behind the API of a web service, meaning that the user has to

manually use a web app to browse data, download and save it to the local file system, and then import

it into another app. Seeing this pattern, the Windows 8 designers found another opportunity to

introduce a new level of integration and consistency, allowing apps to surface back-end data such that

it appears as part of the local file system to other apps. This happens through the file picker contracts,

bringing users a seamless experience across local and online data. Here we’ll see the consumer side of

the story, saving the provider side for Chapter 12, “Contracts.”

In short, managing state and providing access to user data, wherever it’s located, is one of the most

valuable features that apps can provide, and it goes a long way to helping consumers feel that your

app is treating them well.

The Story of State

To continue the analogy started in this chapter’s introduction, when we travel to new places and stay in

296

hotels, most of us accept that we’ll spend a little time upon arrival unpacking our things and setting up

the room to our tastes. On the other hand, we expect the complete opposite from our homes: we

expect continuity or statefulness. Having moved twice in the last year myself (once to a temporary

home while our permanent home was being completed), I can very much appreciate the virtues of

statefulness. Imagine that everything in your home got repacked into boxes every time you left, such

that you had to spend hours, days, or weeks unpacking it all again! No, home is the place where we

expect things to stay put, even if we do leave for a time. I think this exactly why many people enjoy

traveling in a motor home!

WinRT apps are intended to be similarly stateful, meaning that they maintain a sense of continuity

between sessions, even if the app is suspended and terminated along the way. In this way, apps feel

more like a home than a temporary resting place; they become a place where users come to relax with

the content they care about. So, the less work they need to do to start enjoying that experience, the

better.

We’ve already discussed the relationship between session state and app lifecycle events in Chapter

3, “App Anatomy and Page Navigation.” What we’re ready to focus on presently is how to provide the

overall sense of statefulness that includes but extends beyond the lifecycle considerations.

Let’s first briefly revisit user data again. User data like documents, pictures, music, videos, playlists,

and other such data are created and consumed by an app but not dependent on the app itself. User

data implies that any number of apps might be able to load and manipulate such data, and such data

always remains on a system irrespective of the existence of apps. For this reason, user data itself isn’t

really part of an app’s state. That is, while the paths of documents and other files might be

remembered as the current file, in the user’s favorites, or in a recently used list, the actual contents of

those files aren’t part of that state. User data, then, doesn’t have a strong relationship to app lifecycle

events either. It’s either saved explicitly through a user-invoked command or implicitly on events like

visibilitychanged rather than suspending. Again, the app might remember which file is currently

loaded as part of its session state during suspending, but the file contents itself should be saved

outside of this event since you have only five seconds to complete whatever work is necessary.

In contrast to user data, app data is comprised of everything an app needs to run and maintain its

statefulness. App data is also maintained on a per-user basis, is completely tied to the existence of a

specific app, and is accessible by that app exclusively. As we’ve seen earlier in this book, app data is

stored in user-specific folders that are wholly removed from the file system when an app is uninstalled.

For this reason, never store anything in app data that the user might want outside your app. It also

makes sense to avoid using document and media libraries to store state that wouldn’t continue to be

meaningful to the user if the app is uninstalled.

App data is used to manage the following kinds of state:

 Session state The state that an app saves when being suspended to restore it after a

possible termination. This includes form data, the page navigation history, and so forth.

As we saw in Chapter 3, being restarted after being suspended and terminated is the

only case in which an app restores session state. Session state is typically saved

297

incrementally (as the state changes) or within the suspending event.

 Local app state Those settings that are typically loaded when an app is launched.

App state includes cached data, saved searches, lists of recently viewed items, and

various behavioral settings that appear in the Settings panel like display units, preferred

video formats, device-specific configurations, and so on. Local app state is typically

saved when it’s changed since it’s not directly tied to lifecycle events.

 Roaming app state App state that is shared between the same app running on

multiple Windows 8 devices where the same user is logged in, such as favorites, viewing

position within videos, account configurations, URIs for important files on cloud storage

locations, perhaps some saved searches or queries, etc. Like local app state, these might

be manipulated through the Settings panel. Roaming state is also best saved when

values are changed; we’ll see more details on how this works later.

An important point to remember with app data is that it’s carried forward when a user updates your

app. A newer version of an app must be prepared to load and update previous versions of the app

data, so you should always include a version number with your app data.

Settings and State
App state may or may not be surfaced directly to the user. Many bits of state are tracked internally

within the app or, like a navigation history, might reflect user activity but aren’t otherwise presented

directly to the user. Other pieces of state, like preferences, accounts, profile pictures, and so forth, can

and should be directly exposed to the user, which is the purpose of the Settings charm.

What appears in the Settings charm for an app should be those settings that affect behavior of the

app as a whole and are adjusted only occasionally. State that applies only to particular pages or

workflows should not appear in Settings: they should be placed directly on the page (the app canvas)

or in the app bar, as we’ve seen in Chapter 7, “Commanding UI.” All of these things still comprise app

state and are managed as such, but not everything is appropriate for the Settings.

Some examples of good candidates for the Settings charm are as follows:

 Display preferences like units, color themes, alignment grids, and defaults.

 Roaming preferences that allow the user to customize the app’s overall roaming

experience, such as to keep configurations for personal and work machines separate.

 Account and profile configurations, along with commands to log in, log out, and

otherwise manage those accounts and profiles.

 Behavioral settings like online/offline mode, auto-refresh, refresh intervals, preferred

video/audio streaming quality, whether to transfer data over metered network

connections, the location from which the app should draw data, and so forth.

 A feedback link where you can gather specific information from the user.

298

 Additional information about the app, such as Help, About, a copyright page, a privacy

statement, license agreements, and terms of use. Oftentimes these commands will take

the user to a separate website, which is perfectly fine.

I highly recommend that you run the apps that are built into Windows and explore their use of the

Settings charm. You’re welcome to explore how Settings are used by other apps in the Store as well,

but those might not always follows the design guidelines as consistently—and consistency is essential

to settings!

Speaking of which, Windows automatically provides commands called Permissions and Rate and

Review for all apps. Rate and Review takes the user to the product page in the Windows Store where

he or she can, of course, provide a rating and write a review. Permissions, for its part, allows the user to

control the app’s access to sensitive capabilities like geolocation, the camera, the microphone, and so

forth. What appears here is driven by the capabilities declared in the app manifest, and it’s where the

user can go to revoke or grant consent for those capabilities. Of course, if the app uses no such

capabilities, Permissions doesn’t appear.

You might have noticed that I’ve made no mention of showing app updates within Settings. This is

specifically discouraged because update notices are provided through the Windows Store directly. This

is another way of reducing the kinds of noise with which users have had to contend with in the past,

with each app presenting its updates in different ways (and sometimes far too often!).

App Data Locations
Now that we understand what kinds of information make up app state, the next question is, Where is it

stored? You might remember from Chapter 1, “The Life Story of an App,” that when Windows installs

an app for a user (and all WinRT apps are accessible to only the user who installed them), it

automatically creates LocalState, TempState, and RoamingState folders within the current user’s

AppData folder, which are the same ones that get deleted when you uninstall an app. On the file

system, if you point Windows Explorer to %localappdata%\packages, you’ll see a bunch of folders for

the different apps on your system. If you navigate to any of these, you’ll see these folders along with

one called “Settings,” as shown in Figure 8-1 for the built-in Sports app. The figure also shows the

varied contents of these folders.

299

Figure 8-1 The Sports app’s AppData folders and their contents.

In the LocalState folder of Figure 8-1 you can see a file named _sessionState.json. This is the file

where WinJS saves and loads the contents of the WinJS.Application.sessionState object as we saw

in Chapter 3. Since it’s just a text file in JSON format, you can easily open it in Notepad or some other

JSON viewer to examine its contents. In fact, if you look open this file for the Sports app, as is shown in

the figure, you’ll see a value like {"lastSuspendTime":1340057531501}. The Sports app (along with News,

Weather, etc.) show time-sensitive content, so they save when they were suspended and check elapsed

time when they’re resumed. If that time exceeds their refresh intervals, they can go get new data from

their associated service. In the case of the Sports app, one of its Settings specifically lets the user set the

refresh period.

If your app uses any of the HTML5 storage APIs, like local storage, IndexedDB, and app cache, their

data will also appear within the LocalState folder.

Note If you look carefully at Figure 8-1, you’ll see that all the app data–related folders, including

roaming, are in the user’s overall AppData/Local folder. There is also a sibling AppData/Roaming

folder, but this applies only to roaming user account settings on intranets, such as when a

domain-joined user logs in to another machine on a corporate network. This AppData/Roaming folder

has no relationship to the AppData/Local…/RoamingState folder for WinRT apps.

Programmatically, you can refer to these locations in several ways. First, you can use the

ms-appdata:/// URI scheme as we saw in Chapter 3, where ms-appdata:///local,

ms-appdata:///roaming, and ms-appdata:///temp refer to the individual folders and their contents.

(Note the triple slashes, which is a shorthand allowing you to omit the specific package name.) You can

also use the object returned from the Windows. Storage.ApplicationData.current method, which

contains all the APIs you need to work with state.

300

By the way, you might have some read-only state directly in your app package. With URIs, you can

just use relative paths that start with /. If you want to open and read file contents directly, you can use

the StorageFolder object from the

Windows.ApplicationModel.Package.current.installedLocation property through the same

storage APIs that we’ll see shortly.

AppData APIs (WinRT and WinJS)
When you ask Windows for the Windows.Storage.ApplicationData.current property, what you get

is a Windows.Storage.ApplicationData object that is completely configured for your particular app.

This object contains the following:

 localFolder, temporaryFolder, and roamingFolder Each of these properties is a

Windows.Storage.StorageFolder object that allows you to create whatever files and

additional folder structures you want in these locations (but note the

roamingStorageQuota below).

 localSettings and roamingSettings These properties are

Windows.Storage.ApplicationDataContainer objects that provide for managing a

hierarchy of key-value settings pairs or composite groups of such pairs. All these

settings are stored in the appdata Settings folder in the settings.dat file.

 roamingStorageQuota This property contains the number of kilobytes that Windows

will automatically roam for the app (typically 100K); if the total data stored in

roamingFolder and roamingSettings exceeds this amount, roaming will be suspended

until the amount falls below the quota.

 dataChanged An event indicating the contents of the roamingFolder or

roamingSettings have been synchronized from the cloud; an app should re-read

roaming state in this case.

 signalDataChanged A method that triggers a dataChanged event. This allows you to

consolidate local and roaming updates in a single handler for the dataChanged event.

 version property and setVersionAsync method These provide for managing the

version stamp on your app data. This version applies to the whole of your app data,

local, temp, and roaming together; there are not separate versions for each.

 clearAsync A method that clears out the contents of all AppData folders and settings

containers. Use this when you want to reinitialize your default state, which can be

especially helpful if you’ve restarted the app because of corrupt state.

 clearAsync(<locality>) A variant of clearAsync that is limited to one locality

(local, temp, and roaming). The locality is identified with a value from

Windows.Storage.ApplicationDataLocality, such as

Windows.Storage.ApplicationDataLocality.local. In the case of local and roaming,

301

http://msdn.microsoft.com/en-us/library/windows/apps/br241587.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.applicationdatacontainer.aspx

the contents of both the folders and settings containers are cleared; temp affects only

the TempState folder.

Let’s now see how to use the API here to manage the different kinds of app data, which includes a

number of WinJS helpers for the same purpose.

Hint The APIs that work with app state will generate events in the Event Viewer if you’ve enabled the

channel as described in Chapter 3 in the “Debug Output, Error Reports, and the Event Viewer” section.

Again, make sure that View > Show Analytics and Debug Logs is checked on the menu. Then navigate

to Application and Services Log, and expand Microsoft/Windows/AppModel-State, where you’ll find

Debug and Diagnostic groups.

Settings Containers

For starters, let’s look at the localSettings and roamingSettings properties, which are typically

referred to as settings containers. You work with these through the ApplicationDataContainer API,

which is relatively simple. Each container contains four read-only properties: a name (a string), a

locality (again from Windows.Storage.ApplicationDataLocality, with local and roaming being

the only values here), and collections called values and containers.

The top-level settings containers have empty names; the property will be set for child containers

that you create with the createContainer method (and remove with deleteContainer). Those child

containers can have other containers as well, allowing you to create a whole settings hierarchy. That

said, these settings containers are intended to be used for small amounts of data, typically user

settings; any individual setting is limited to 8K and any composite setting (see below) to 64K. With

these limits, going beyond about a megabyte of settings implies a somewhat complex hierarchy, which

will be difficult to manage and will certainly slow access. So don’t be tempted to think of app data

settings as a kind of database; other mechanisms like IndexedDB are much better suited for that

purpose, and you can write however much data you like as files in the various AppData folders

(remembering the roaming limit when you write to roamingFolder).

For whatever container you have in hand, its containers collection is an IMapView object through

which you can enumerate its contents. The values collection, on the other hand, is just an array

(technically an IPropertySet object in WinRT, which is projected into JavaScript as an array). So,

although the values property in any container is itself read-only, meaning that you can’t assign some

other arbitrary array to it, you can manipulate the contents of the array however you like.

We can see this in the Application Data sample, which is a good reference for many of the core app

data operations. Scenario 1, for example (settings.js), shows the simply use of the

localSettings.values array:

var localSettings = Windows.Storage.ApplicationData.current.localSettings;

var settingName = "exampleSetting";

var settingValue = "Hello World";

function settingsWriteSetting() {

302

http://msdn.microsoft.com/en-us/library/windows/apps/br226037.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationData-sample-fb043eb2

 localSettings.values[settingName] = settingValue;

}

function settingsDeleteSetting() {

 localSettings.values.remove(settingName);

}

Many settings, like that shown above, are just simple key-value pairs, but other settings will be

objects with multiple properties. This presents a particular challenge: although you can certainly write

and read the individual properties of that object within the values array, what happens if a failure

occurs with one of them? That would cause your state to become corrupt.

To guard against this, the app data APIs provide for composite settings, which are groups of

individual properties that are guaranteed to be managed as a single unit. (Again, each composite has a

64K limit.) It’s like the perfect group consciousness: either we all succeed or we all fail, with nothing in

between! That is, if there’s an error reading or writing any part of the composite, the whole composite

fails; with roaming, either the whole composite roams or none of it roams.

A composite object is created using Windows.Storage.ApplicationDataCompositeValue, as shown

in Scenario 2 of the Application Data sample:

var roamingSettings = Windows.Storage.ApplicationData.current.roamingSettings;

var settingName = "exampleCompositeSetting";

var settingName1 = "one";

var settingName2 = "hello";

function compositeSettingsWriteCompositeSetting() {

 var composite = new Windows.Storage.ApplicationDataCompositeValue();

 composite[settingName1] = 1; // example value

 composite[settingName2] = "world"; // example value

 roamingSettings.values[settingName] = composite;

 }

function compositeSettingsDeleteCompositeSetting() {

 roamingSettings.values.remove(settingName);

}

unction compositeSettingsDisplayOutput() {

 var composite = roamingSettings.values[settingName];

}

The ApplicationDataCompositeValue object has, as you can see in the documentation, some

additional methods and events to help you manage it.

Composites are, in many ways, like their own kind of settings container, just that they cannot

contain additional containers. It’s also important to not confuse the two. Child containers within

settings are used only to create a hierarchy (refer to Scenario 3 in the sample). Composites, on the

other hand, specifically exist to create more complex groups of settings that act like a single unit, a

behavior that is not guaranteed for settings containers themselves.

As noted earlier, these settings are all written to the settings.dat file in your app data Settings folder.

303

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.applicationdatacompositevalue.aspx

It’s also good to know that changes you make to settings containers are automatically saved, though

there is some built-in batching to prevent excessive disk activity when you change a number of values

all in a row. In any case, you really don’t need to worry about when you save settings; the system will

manage those details.

Versioning App State

From Windows’ point of view, local, temp, and roaming state are all parts of the same whole and all

share the same version. That version number is set with

Windows.Storage.ApplicationData.setVersionAsync, the value of which you can retrieve through

Windows.Storage.ApplicationData.version (a read-only property). If you like, you can maintain

your own versioning system within particular files or settings. I would recommend, however, that you

avoid doing this with roaming data because it’s hard to predict how Windows will manage

synchronizing slightly different structures. Even with local state, trying to play complex versioning

games is, well, rather complex, and probably best avoided altogether.

The version of your app data is also a different matter than the version of your app; in fact, there is

really no inherent relationship between the two. While the app data version is set with

setVersionAsync, the app version is managed through the Packaging section of the app manifest. You

can have versions 1.0.0.0 through 4.3.9.3 of the app use version 1.0.0.0 of app data, or maybe version

1.2.1.9 of the app shifts to version 1.0.1.0 of the app data, and version 2.1.1.3 moves to 1.2.0.0 of the

app data. It doesn’t really matter, so long as you keep it all straight and can migrate old versions of the

app data to new versions!

Migration happens as part of the setVersionAsync call, whose second parameter is a function to

handle the conversion. That function receives a SetVersionRequest object that contains

currentVersion and desiredVersion properties, thereby instructing your function as to what kind of

conversion is actually needed. In response, you should go through all your app data and migrate the

individual settings and files accordingly. Once you return from the conversion handler, Windows will

assume the migration is complete. Of course, because the process will often involve asynchronous file

I/O operations, you can use a deferral mechanism like that we’ve seen with activation. Call the

SetVersionRequest.getDeferral method to obtain the deferral object (a SetVersionDeferral), and

call its complete method when all your async operations are done.

An example of version migration can be found in Scenario 7 of the Application Data sample.

Storage Folders and Storage Files

As it is often highly convenient to save app data directly in file, it’s high time we start looking more

closely at the File I/O APIs for WinRT apps. We have touched on these a little already in the Here My

Am! app back in Chapter 3, where we used the local folder’s createFolderAsync and the

StorageFile.copyAsync methods. We’re now ready to see the rest of those APIs.

First, however, other APIs like URL.createObjectURL—working with what are known as

blobs—make it possible to do many things in an app without having descend to the level of file I/O at

304

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.applicationdata.setversionasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.setversionrequest.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationData-sample-fb043eb2

all! We’ve already seen how to use this to set the src of an img element, and the same works for other

elements like audio, video, and iframe. The file I/O operations involved with such elements is

encapsulated within createObjectURL. There are other ways to use a blob as well, such as converting a

canvas element with canvas.msToBlob into something you can assign to an img element, and

obtaining a binary blob from WinJS.xhr, saving it to a file, and then sourcing an img from that. We’ll

see some more of this in Chapter 10, “Media,” and you can refer to the Using a blob to save and load

content sample in the Windows SDK for more.

For working directly with files, now, let’s get a bearing on what we have at our disposal, and you can

refer to the File Access sample for concrete examples.

The core WinRT APIs for files live within the Windows.Storage namespace: these are the

StorageFolder and StorageFile classes, sometimes referred to generically as “storage items” because

they are both derived from IStorageItem and thus share properties like name, path, dateCreated, and

attributes properties along with the methods deleteAsync and renameAsync.

With the exception of files obtained from the file picker UI (as we’ll see later in this chapter) and the

StorageFile.getFileFromPathAsync method (see the fifth bullet below), file I/O in WinRT typically

starts by obtaining a StorageFolder object for the folder in which you want to create, read, or save

files and subfolders. That happens through one of these methods or properties:

 Windows.ApplicationModel.Package.current.installedLocation gets a

StorageFolder through which you can load data from files in your package (all files

therein are read-only).

 Windows.Storage.ApplicationData.current.localFolder, roamingFolder, or

temporaryFolder provides StorageFolder objects for your app data locations

(read-write).

 An app can allow the user to select a folder (or file) directly using the file pickers

invoked through Windows.Storage.Pickers.FolderPicker (plus FileOpenPicker and

FileSavePicker). This is the preferred way for apps to generally access files when they

don’t otherwise need to enumerate contents of a library (see next bullet). This is also

the only means through which app can access safe (nonsystem) areas of the file system

without additional declarations in the manifest.

 Windows.Storage.KnownFolders provides StorageFolder objects for specific libraries

(Pictures, Music, Videos, Documents, etc.) in which you can save and load user data

according to access declared in your manifest (attempting to obtain a folder without

the correct permissions with throw an Access Denied exception). We’ll discuss user data

and libraries in a later section of this chapter.

 The Windows.Storage.DownloadsFolder provides a createFolderAsync method

through which you can obtain a StorageFolder in that location. It also provides a

305

http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e
http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e
http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.storagefolder.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.storagefile.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.istorageitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.package.installedlocation.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.folderpicker.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.fileopenpicker.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.filesavepicker.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.knownfolders.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.downloadsfolder.aspx

createFileAsync method to create a StorageFile directly. You would use this API if

your app manages downloaded files directly. (Note that DownloadsFolder itself

provides only these two methods; it is not a StorageFolder in its own right.)

 The static method Windows.Storage.StorageFolder.getFolderFromPathAsync

returns a StorageFolder for a given pathname if and only if your app already has

permissions to access it; otherwise, you’ll get an Access Denied exception. A similar

static method exists for files called

Windows.Storage.StorageFile.getFileFromPathAsync, with the same restrictions;

Windows.Storage.StorageFile.getFileFromApplicationUriAsync opens files with

ms-appx:// (package) and ms-appdata:// (appdata) URIs. Other schemas are not

supported.

 Once a folder or file object is obtained, it can be stored in the

Windows.Storage.AccessCache mechanism that allows an app to reaccess the same

folder or file in the future. This is primarily needed for folders or files selected through

the pickers because permission to access the storage item is granted only for the

lifetime of that in-memory object. You should always use this API, as demonstrated in

Scenario 6 of the File access sample, where you’d otherwise think to save a file path

because such paths won’t be valid for files provided by another app through the file

picker. Even when such a path refers to the local file system, attempting to open that

file again using only the path will throw an access denied exception if it exists outside

your package, your AppData folders, or those libraries for which you’ve declared access.

Once you have a StorageFolder in hand, you can do the kinds of operations you’d expect: obtain

folder properties (including a thumbnail), create and/or open files and folders, and enumerate the

folder’s contents. With the latter, the API provides for obtaining a list folder contents, of course (see the

getItemsAsync method), but what you want more often is a partial list of those contents according to

certain criteria, along with thumbnails and other indexed file metadata (like music album and track

info, picture titles and tags, etc.) that you can use to group and organize the files however you like. This

is the purpose of file, folder, and item (file + folder) queries, which you manage through the methods

createFileQuery[WithOptions], createFolderQuery[WithOptions], and

createItemQuery[WithOptions]. We already saw a little of this with the FlipView app we built using

the Pictures Library in Chapter 5, “Collection and Collection Controls” and we’ll return to the subject in

the context of user data (the primary scenario for queries) at the end of this chapter.

Tip There are some file extensions that are reserved by the system and won’t be enumerated, such as

.lnk, .url, and others; a complete list is found on the How to handle file activation topic. Also note that

the ability to access UNC pathnames requires the Private Networks and Enterprise Authentication

capabilities in the manifest along with declarations of the file types you wish to access.

With any given StorageFolder, especially for your app data locations, you can clearly create

whatever folder structures you like through its createFolderAsync/getFolderAsync methods, which

306

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.storagefolder.getfolderfrompathasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.storagefile.getfilefrompathasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.storagefile.getfilefromapplicationuriasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.accesscache.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452684.aspx

gives you more StorageFolder objects. Within any of those folders you then use the

createFileAsync/getFileAsync methods to access individual files, each of which you again see as a

StorageFile object.

Each StorageFile provides relevant properties like name, path, dateCreated, fileType,

contentType, getThumbnailAsync, and attributes, of course, along with methods like copyAsync,

deleteAsync, moveAsync, moveAndReplaceAsync, and renameAsync for file management purposes. A

file can then be opened in a number of ways depending on the kind of access you need, using these

methods:

 openAsync and openReadAsync provide random-access byte-reader/writer streams. The

streams are IRandomAccessStream and IRandomAccessStreamWithContentType

objects, respectively, both in the Windows.Storage.Streams namespace. The first of

these works with a pure binary stream; the second works with data+type information,

as would be needed with an http response that prepends a content type to a data

stream.

 openSequentialReadAsync provides a read-only

IWindows.Storage.Streams.IInputStream object through which you can read file

contents in blocks of bytes but cannot skip back to previous locations. You should

always use this method when you simply need to consume the stream as it has better

performance than a random access stream (the source can optimize for sequential

reads).

 openTransactedWriteAsync provides a Windows.Storage.StorageStreamTransaction

that’s basically a helper object around an IRandomAccessStream with commitAsync and

close methods to handle the transactioning. This is necessary when saving complex

data to make sure that the whole write operation happens atomically and won’t result

in corrupted files if interrupted. Scenario 4 of the File Access sample shows this.

The StorageFile class also provides two static methods, createStreamedFileAsync and

createStreamedFileFromUriAsync, to obtain a StorageFile that you typically pass to other apps

through contracts as we’ll see more of in Chapter 12. The utility of these methods is that the underlying

file isn’t accessed at all until data is first requested from it, if such a request ever happens at all.

Pulling all this together now, here’s a little piece of code using the raw API we’ve seen thus far to

create and open a “data.tmp” file in our temporary AppData folder, and write a given string to it. This

bit of code is in the RawFileWrite example for this chapter. Let me be clear that what’s shown here

utilizes the lowest-level API in WinRT for this purpose and isn’t what you typically use, as we’ll see in

the next section. It’s instructive nonetheless as there are times you need to use something similar:

var fileContents = "Congratulations, you're written data to a temp file!";

writeTempFileRaw("data.tmp", fileContents);

function writeTempFileRaw(filename, contents) {

307

http://msdn.microsoft.com/en-us/library/windows/apps/br227171.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh438400.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.streams.irandomaccessstreamwithcontenttype.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br241718.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh996767.aspx

 var tempFolder = Windows.Storage.ApplicationData.current.temporaryFolder;

 var outputStream;

 //Egads!

 tempFolder.createFileAsync(filename, Windows.Storage.CreationCollisionOption.replaceExisting)

 .then(function (file) {

 return file.openAsync(Windows.Storage.FileAccessMode.readWrite);

 }).then(function (stream) {

 outputStream = stream.getOutputStreamAt(0);

 var writer = new Windows.Storage.Streams.DataWriter(outputStream);

 writer.writeString(contents);

 return writer.storeAsync();

 }).done();

}

Good thing we learned about chained async operations a while back! First we create or open the

specified file in our app data’s temporaryFolder (createFileAsync), and then we obtain an output

stream for that file (openAsync and getOutputStreamAt). We then create a DataWriter around that

stream, write our contents into it (writeString), and make sure it’s stored in the file (storeAsync).

But, you’re saying, “You’ve got to be kidding me! Four chained async operations just to write a

simple string to a file! Who designed this API?” Indeed, when we started building the very first WinRT

apps within Microsoft, this is all we had, and we asked these questions ourselves! After all, doing some

hopefully simple file I/O is typically the first thing you add to your first Hello World app, and this was

anything but simple. To make matters worse, at that time we didn’t yet have promises for async

operations in JavaScript either, so we had to write the whole thing with raw nested operations. Such

were the days.

Fortunately, simpler APIs were already available and more came along shortly thereafter. These are

the APIs you’ll typically use when working with files as we’ll see in the next section. It is nevertheless

important to understand the structure of the low-level code above because the

Window.Storage.Streams.DataWriter class shown in that code, along with its DataReader sibling, are

very important mechanisms for working with a variety of different I/O streams and are essential for

data encoding processes. Having control over the fine details also supports scenarios such as having

different components in your app that are all contributing to the file structure. So it’s good to take a

look at their reference documentation along with the Reading and Writing data sample just so that

you’re familiar with their capabilities.

The FileIO, PathIO, and WinJS helper classes (plus FileReader)

Simplicity is a good thing where File I/O is concerned, and the designers of WinRT made sure that the

most common scenarios didn’t require a long chain of async operations like we saw in the previous

section. The Windows.Storage.FileIO and PathIO classes provide such a streamlined interface, with

the only difference between the two being that the FileIO methods take a StorageFile parameter

whereas the PathIO methods take a filename string. Otherwise they offer the same methods called

[read | write]BufferAsync (these work with byte arrays), [append | read | write]LinesAsync (these

work with arrays of strings), and [append | read | write]TextAsync (these work with singular strings).

308

http://msdn.microsoft.com/en-us/library/windows/apps/br208154.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.streams.datareader.aspx
http://go.microsoft.com/fwlink/?LinkID=231581
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.fileio.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pathio.aspx

In the latter case, the WinJS.IOHelper class provides an even simpler interface through its readText

and writeText methods.

Let’s see how those work, starting with a few examples from the File Access sample. Scenario 2

shows writing a text string from a control to a file (this code is simplified from the sample for clarity):

var userContent = textArea.innerText;

//sampleFile created on startip from Windows.Storage.KnownFolders.documentsLibrary.getFileAsync

Windows.Storage.FileIO.writeTextAsync(sampleFile, userContent).done(function () {

 outputDiv.innerHTML = "The following text was written to '" + sampleFile.name

 + "':

" + userContent;

 });

To compare to the example in the previous section, we can replace all the business with streams and

DataWriters with one line of code:

tempFolder.createFileAsync(filename, Windows.Storage.CreationCollisionOption.replaceExisting)

.then(function (file) {

 Windows.Storage.FileIO.writeTextAsync(file, contents).done();

})

To make it even simpler, the WinJS.Application.temp object (an WinJS.Application.IOHelper)

reduces even this down to a single line (which is an async call and returns a promise):

WinJS.Application.temp.writeText(file, contents);

Reading text through the async readText method is equally simple, and WinJS provides the same

interface for the local and roaming folders along with two other methods, exists and remove.40 That

said, these WinJS helpers are available only for your AppData folders and not for the file system more

broadly; for that you should be using the FileIO and PathIO classes.

You also have the HTML5 FileReader class available for use in WinRT apps, which is part of the

W3C File API specification. As its name implies, it’s suited only for reading files and cannot write them,

but one of its strengths is that it can work both with files and blobs. Some examples of this are found in

the Using a blob to save and load content sample.

Encryption and Compression

WinRT provides two additional capabilities that might be very helpful to your state management:

encryption and compression.

Encryption is provided through the Windows.Security.Cryptography and Windows.Security.-

Cryptography.Core API. The former contains methods for basic encoding and decoding (base64, hex,

40 If you’re curious as to why async methods like readText and writeText don’t have Async in their names, this was a

conscious choice on the part of the WinJS designers to follow existing JavaScript conventions where such a suffix isn’t

used. The WinRT API, on the other hand, is language-independent and thus has its own convention where the Async

suffix is included.

309

http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000
http://msdn.microsoft.com/en-us/library/windows/apps/br211764.aspx
http://www.w3.org/TR/FileAPI/#dfn-filereader
http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e
http://msdn.microsoft.com/en-us/library/windows/apps/br241404.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.aspx

and text formats); the latter handles actual encryption according to various algorithms. As

demonstrated in the Secret saver encryption sample, you typically encode data in some manner with

the Windows.Security.Cryptography.CryptographicBuffer.convertStringToBinary method and

then create or obtain an algorithm and pass that with the data buffer to

Windows.Security.Cryptography.Core.CryptographicEngine.encrypt. Methods like decrypt and

convertBinaryToString perform the reverse.

Compression is a little simpler in that its only purpose is to provide a built-in API through which you

can make your data smaller (say, to decrease the size of your roaming data). The API for this in

Windows.Storage.Compression is composed of Compressor and Decompressor classes, both of which

are demonstrated in the Compression sample. Understand that this API does not work with ZIP files or

other standard compression formats—it’s merely intended to provide a baseline data compression

method. Adjust your expectations accordingly!

Using App Data APIs for State Management
Now that we’ve seen the nature of the APIs, let’s see how they’re used for different kinds of app data

and any special considerations that come into play.

Session State

As described before, session state is whatever an app saves when being suspended so that it can

restore itself to that state if it’s terminated by the system and later restarted. Being terminated by the

system is again the only time this happens, so what you include in session state should always be

scoped to that exact scenario, which is to say, whatever is necessary to give the user the illusion that

the app was running the whole time. In some cases, as described in Chapter 3, you might not in fact

restore this state, especially if it’s been a long time since the app was suspended such that it’s unlikely

the user would really remember where they left off. That’s a decision you need to make for your own

app and the experience you want to provide for your customers.

Session state should be saved within the appdata localFolder or the localSettings object. It

should not be saved in a temp area since the user could run the disk cleanup tool while your app is

suspended or terminated in which case session state would be deleted (see next section).

The WinJS sessionState object internally creates a file called _sessionState.json within the

localFolder, so it follows this same pattern (and the file is just JSON text, so you can examine it any

time). You can and should write session state to the sessionState object whenever it changes, and

really just use sessionState as the container for your run-time variables. This way they get saved and

reloaded automatically without needing to transfer its contents to other variables.

If you need to store additional values within sessionState before its written, do that in your

handler for WinJS.Application.oncheckpoint. A good example of such data is the navigation stack

for your page controls, which is available in WinJS.Navigation.history; you could also copy this data

to sessionState within the PageControlNavigator.navigated method (in navigator.js as provided by

the project templates. In any case, WinJS has its own checkpoint handler that is always called last

310

http://code.msdn.microsoft.com/windowsapps/Secret-Saver-f8a69623
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.compression.aspx
http://code.msdn.microsoft.com/windowsapps/Compression-sample-9d57900f

(after your handler) to make sure that any changes you make to sessionState in response to that

event are saved.

If you don’t use the WinJS sessionState object and just use the WinRT appdata APIs directly, you

can write your session state whenever you like (including within checkpoint), and you’ll need to

restore it directly within your activated event for previousExecutionState == terminated.

It’s also a good practice to build some resilience into your handling of session state: if what gets

loaded doesn’t seem consistent or has some other problem, revert to default session values. Remember

too that you can use the localSettings container with composite settings to guarantee that groups

of values will be stored and retrieved as a unit. You might also find it helpful during development to

give yourself a simple command to clear your app state in case things get really fouled up, but then

just uninstalling your app will clear all that out as well. At the same time, it’s not necessary to provide

your users with a command to clear session state: if your app fails to launch after being terminated, the

previousExecutionState flag will be notRunning the next time the user tries, in which case you won’t

attempt to restore the state.

Similarly, it’s not necessary to include a version number in session state. If the user installs an update

during the time your app has been suspended and terminated, the previousExecutionState value

will be reset if the app’s version number has changed in any way. If for some reason you don’t actually

change the version number, for instance, if your update is only a very minor patch, then your session

state can carry forward. But in this case it’s essentially the same app, so versioning the state isn’t an

issue.

Sidebar: Using HTML5 sessionStorage and localStorage

If you prefer, you can use HTML5 localStorage object for both session and other local app data;

its contents get persisted to the app data localFolder as well. The contents of localStorage

are not loaded until first accessed and are limited to 10MB per app; the WinRT and WinJS APIs,

on the other hand, are limited only by the capacity of the file system.

As for the HTML5 sessionStorage object, it’s not really needed when you’re using page

controls and maintaining your script context between app pages—your in-memory variables

already do the job. However, if you’re actually changing page contexts by using <a> links and

such, sessionStorage can still be useful; you can also encode information into URIs as

commonly done with web apps.

Both sessionStorage and localStorage are also useful within iframe pages running in the

web context, since the WinRT APIs are not available. At the same time, you can load WinJS into a

web context page (this is supported), and the WinJS.Application.local, roaming, and temp

objects still work. In this case the WinJS objects will be using an in-memory buffer instead of

writing to the file system, but all their methods still work.

311

Local and Temporary State

Unlik session state that is restored only in particular circumstances, local app state is composed of

those settings and other values that are always loaded when an app is launched. Anything that the user

can set directly falls into this category, unless it’s also part of the roaming experience, in which case it is

still loaded on app startup. Any other cached data, saved searches, recently used items, display units,

preferred media formats, and device-specific configurations also fall into this bucket. In short, if it’s not

pure session state and not part of your app’s roaming experience, it’s local or temporary state.

All the same APIs we’ve seen work for this form of state, including all the WinRT APIs, the

WinJS.Application.local and temp objects, and HTML localStorage. You can also use the HTML5

IndexedDB APIs (see the next section) and the HTML App Cache feature (see sidebar)—these are just

other forms of local app data.

Unlike with session state, it’s very important to version-stamp your local and temp app data,

because it will always be preserved across an app update (unless temp state has been cleaned up in the

meantime). With any app update, then, be prepared to load old versions of your state and make the

necessary updates, or simply decide that a version is too old and purge it

(Windows.Storage.ApplicationData.current.clearAsync) before setting up new defaults.

Generally speaking, local and temp app data are exactly the same—they have the same APIs and

are stored in parallel folders. One exception is that temp doesn’t support settings and settings

containers. The other is that the contents of your temp folder (along with the HTML5 app cache) are

subject to the Windows Disk Cleanup tool. This means that your temp data could disappear at any time

when the user wants to free up some disk space. For this reason, temp should be used for storage that

optimizes your apps performance but not for anything that’s critical to its operation. For example, if

you have a JSON file in your package that you parse on first startup such that the app starts more

quickly afterwards, and you don’t make any changes to that data from the app, you might elect to

store that in temp. The same is true for graphical resources that you might have fine-tuned for the

specific device you’re running on; you can always repeat that process from the original resources, so it’s

another good candidate for temp data. Similarly, if you’ve acquired data from an online service as an

optimization (that is, so that you can just update the local copy incrementally), you can always

reacquire it. This is especially helpful for providing an offline experience for your app, though in some

cases you might want to let the user choose to save it in local instead of temp (an option that would

appear in Settings along with the ability to clear the cache).

Sidebar: HTML5 App Cache

WinRT apps can employ the HTML 5 app cache as part of an offline/caching strategy. It is most

useful in iframe web context elements where it can be used for any kind of content. For

example, an app that reads online books can show such content in an iframe, and if those pages

include app cache instructions, they’ll be saved and available offline. Of course, it will work for

any remote page content.

312

In the local context, the app cache works for nonexecutable resources like images, audio, and

video, but not for HTML or JavaScript.

IndexedDB and Other Database Options

Many forms of local app data are well suited to being managed in a database. In WinRT apps, the

IndexedDB API is available through the window.indexedDB and worker.indexedDB objects. For

complete details on using this feature, I’ll refer you to the W3C specifications, the Indexed Database

API reference for WinRT apps, and the IndexedDB Sample in the Windows SDK.

Although an IndexedDB database is stored within your app’s local app data, be aware that there are

some limitations that are imposed because there isn’t a means through which the app or the system

can shrink a database file and reclaim unused space. Here’s a rundown of that and a few other details:

 IndexedDB has a 250MB limit per app and an overall system limit of 12.5% (1/8th) of

available storage or 1TB, whichever is less. So it could be true that your app might not

have much room to work with anyway, in which case you need to make sure you have a

fallback mechanism.

 IndexedDB on Windows 8 has no complex key paths—that is, it does not presently

support multiple values for a key or index (multientry).

 By default, access to IndexedDB is given only to HTML pages that are part of the app

package and those declared as content URIs. (See the “Local and Web Contexts within

the App Host” section at the beginning of Chapter 3.) That is, random web pages you

might host in an iframe will not be given access, primarily to preserve space within the

250MB limit for those pages you really care about in your app. However, you can grant

access to arbitrary pages by including the following tag in your home page and not

setting the iframe src attribute until the DOMContentLoaded or activated event has

fired:

<meta name="ms-enable-external-database-usage" content="true"/>

Beyond IndexedDB that are a few other database options for WinRT apps. For a local relational

database, try SQLite. This is an API that’s suited well for apps written in a language like C#, as described

in Tim Heuer’s blog on the subject, but fortunately, there is a version called SQL.js, which is SQLite

compiled to JavaScript via Emscripten. Very cool! There might also be other JavaScript solutions

available in the community.

If the storage limits for IndexedDB are a concern, you might use the Win32 “Jet” or Extensible

Storage Engine (ESE) APIs (on which the IndexedDB implementation is built). For this you’ll need to

write a WinRT Component wrapper in C# or C++ (the general process for which is in Chapter 16,

“WinRT Components”), since JavaScript cannot get to those APIs directly.

The same is true for other third-party database APIs. So long as that engine uses only the Win32

313

http://dvcs.w3.org/hg/IndexedDB/
http://msdn.microsoft.com/en-us/library/windows/apps/hh466139.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh466139.aspx
http://code.msdn.microsoft.com/windowsapps/IndexedDB-sample-eb1e95af
http://code.msdn.microsoft.com/windowsapps/IndexedDB-sample-eb1e95af
http://timheuer.com/blog/archive/2012/06/05/howto-video-using-sqlite-in-metro-style-app.aspx
http://badassjs.com/post/18857332551/sql-js-sqlite-compiled-to-javascript-via-emscriptenhttp:/badassjs.com/post/18857332551/sql-js-sqlite-compiled-to-javascript-via-emscripten
http://badassjs.com/post/18857332551/sql-js-sqlite-compiled-to-javascript-via-emscriptenhttp:/badassjs.com/post/18857332551/sql-js-sqlite-compiled-to-javascript-via-emscripten
http://msdn.microsoft.com/en-us/library/windows/apps/br205753.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br205753.aspx

APIs allowable for WinRT apps (listed on the Win32 and COM for WinRT apps page), they’ll work just

fine.

It’s also worth noting that the OData Library for JavaScript also works great for WinRT apps to

access online SQL Servers, because the OData protocol itself just works via REST.

Finally, another option for searchable file-backed data is to use the system index by creating a folder

named “indexed” in your local AppData folder. The contents of the files in this folder will be indexed by

the system indexer and can be queried using Advanced Query Syntax (AQS) with the APIs explained

later in “Rich Enumeration with File Queries.” You can also do property-based searched for Windows

properties, making this approach a simple alternative to database solutions.

Roaming State

The automatic roaming of app state between a user’s devices is again one of the most interesting and

enabling features of Windows 8. There are few areas where a small piece of technology like this has so

greatly reduced the burden on app developers!

It works very simply. First, your app data roamingFolder and your roamingSettings container

behave exactly like their local counterparts. So long as their combined size is less than

Windows.Storage.ApplicationData.current.roamingStorageQuota, Windows will copy that data to

other devices where the same user is logged in has the same app installed; in fact, when an app is

installed, Windows attempts to copy roaming data so that it’s there when the app is first launched.

If the app is running simultaneously on multiple devices, the last writer of any particular file or

setting always wins, and when data has been roaming those apps will receive the

Windows.Storage.ApplicationData.ondatachanged event. So your app will always read the

appropriate roaming state on startup and refresh that state as needed within datachanged. You should

always employ this strategy too in case Windows cannot bring down roaming state for a newly

installed app right away (such as when the user installed the app and lost connectivity). As soon as the

roaming state appears, you’ll receive the datachanged event. Scenario 4 of the Application Data

sample provides a basic demonstration of this.

Deciding what your roaming experience really looks like is really a design question more than a

development question. It’s a matter of taking all app settings that are not specific to the device

hardware (such as settings that are related to screen size, video capabilities, or the presence of

particular peripherals or sensors), and thinking through whether it makes sense for each setting to be

roamed. A user’s favorites, for example, are appropriate to roam if they refer to data that isn’t local to

the device. That is, favorite URIs or locations on a cloud storage service like SkyDrive, FaceBook, or

Flickr are appropriate to roam; favorites and recently used files in a user’s local libraries are not. The

viewing position within a cloud-based video, like a streaming movie, would be appropriate to roam, as

would be the last reading position in a magazine or book. But again, if that content is local, then

maybe not. Account configurations like email settings are often good candidates, so the user doesn’t

have to configure the app again on other devices.

314

http://msdn.microsoft.com/en-us/library/windows/apps/br205757.aspx
http://www.odata.org/libraries#JavaScript
http://msdn.microsoft.com/en-us/library/windows/desktop/dd561977(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd561977(v=vs.85).aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationData-sample-fb043eb2
http://code.msdn.microsoft.com/windowsapps/ApplicationData-sample-fb043eb2

At the same time, you might not be able to predict whether the user will really want to roam certain

settings. In this case, the right choice is to give the user a choice! That is, include options in your

Settings UI to allow the user to customize the roaming experience to their liking, especially as a user

might have devices for both home and work use where they do want the same app to behave

differently. For instance, with a RSS Reader the user might not want notifications on their work machine

whenever new articles arrive, but would want real-time updates at home. The set of feeds itself, on the

other hand, would probably always be roamed.

To minimize the size of your roaming state, you might want to use the

Windows.Storage.Compression API for file-based data. For this same reason, and because roaming

state is app data, you should never use this mechanism to roam user data. Instead, use an online

service like SkyDrive (or one of your own running, for example, on Windows Azure) to store user data

in the cloud, and then roam URIs to those files as part of the roaming experience. More details on

using SkyDrive through its REST API can be found on the SkyDrive reference, on the Skydrive core

reference (which includes a list of supported file types), and in the PhotoSky sample. A backgrounder

on this and other Windows Live services can also be found on the Building Windows 8 blog post

entitled Extending "Windows 8" apps to the cloud with SkyDrive.

By now you probably have a number of other questions forming in your mind about how roaming

actually works: “How often is data synchronized?” “How do I manage different versions?” “What else

should I know?” These are good questions, and fortunately there are good answers!

 Assuming there’s network connectivity, an app’s roaming state is roamed within 30

minutes on an active machine. It’s also roamed immediately when the user logs on or

locks the machine. Locking the machine is always the best way to force a sync to the

cloud. Note that if the cloud service is only aware of the user (that is, a Microsoft

account) having only one device, synchronization with the cloud service happens only

about once per day. When the service is aware that the user has multiple machines, it

begins synchronizing within the 30-minute period.

 When saving roaming state, you can write values whenever you like, such as when those

settings are changed. You don’t need to worry about writing settings as a group

because Windows has a built-in debounce period to combine changes together and

reduce overall network traffic.

 If you have a group of settings that really must be roamed together, manage these as a

composite setting in your roamingSettings container.

 With files you create within the roamingFolder, these will not be roamed so long as

you have the file open for writing.

 Windows allows each app to have up to 8K worth of “high priority” settings that will be

roamed within one minute, thereby allowing apps on multiple devices to stay much

more closely in sync. To use this, create a single or composite setting within the root of

your roamingSettings with the name HighPriority—that is,

315

http://msdn.microsoft.com/en-us/library/live/hh826531
http://msdn.microsoft.com/en-us/library/live/hh826545.aspx
http://msdn.microsoft.com/en-us/library/live/hh826545.aspx
http://code.msdn.microsoft.com/Live-SDK-Windows-Developer-8ad35141/
http://blogs.msdn.com/b/b8/archive/2011/09/28/extending-quot-windows-8-quot-apps-to-the-cloud-with-skydrive.aspx

roamingSettings.values["HighPriority"] (a container with this name will roam

normally). So long as you keep the size of this setting below 8K, it will be roamed within

a minute of being changed; if you exceed that size, it will be roamed with normal

priority. See Scenario 9 of the Application Data sample for a demonstration.

 Systemwide user settings like the Start page configuration are automatically roamed

apart from other apps. This also includes encrypted credentials saved by apps in the

password vault; apps never need to attempt to roam passwords. Apps that create

secondary tiles (as we’ll see in Chapter 13, “Tiles, Notifications, the Lock Screen, and

Background Tasks”) can indicate whether such tiles should be copied to a new device

when the app is installed.

 When there are multiple app data versions in use by the same app (with multiple app

versions, of course), Windows will manage each version of the app data separately,

meaning that newer app data won’t be roamed to devices with apps that use older app

data versions. In light of this, it’s a good idea to not be too aggressive in versioning

your app data since it will break the roaming connection between apps.

 The cloud service will retain multiple versions of roaming app data so long as there are

multiple versions in use by the same Microsoft account. Only when all instances of the

app have been updated will older versions of the roaming state be deleted.

 When an updated app encounters an older version of roaming state, it should load it

according to the old version but save it as the new version and call setVersionAsync.

 Avoid using secondary versioning schemes within roaming state such that you

introduce structural differences without changing the appdata version through

setVersionAsync. Because the cloud service is managing the roaming state by this

version number, and because the last writer always wins, some version of an app that

expects to see some extra bit of data, and in fact saved it there, might find that it’s been

removed because a slightly older version of the app didn’t write it. In short, it’s best to

avoid this.

 Even if all apps are uninstalled from a user’s devices, the cloud service retains roaming

data for “a reasonable time” (maybe 30 days) so that if a user reinstalls the app within

that time period they’ll find that their settings are still intact. To avoid this retention and

explicitly clear roaming state from the cloud, use the clearAsync method.

Settings Pane and UI

We’ve now seen all the different APIs that an app can use to manage its state where storage is

concerned, which is all you need for settings and other app data that are managed internally within the

app. The question now is how to surface those settings that are user-configurable—for that we turn to

316

the Settings charm.

When the user invokes the Settings charm (which can also be done directly with the Win+i key),

Windows displays the Settings pane, a piece of UI that is populated with various settings commands as

well as system functions along the bottom. Apps can add their own commands, as most apps have

some user-configurable settings of their own. Windows also guarantees that something always shows

up for the app in this pane. It automatically displays the app name and publisher, a Rate and Review

command that takes you to the Windows Store page for the app, an Update command if an update is

available from the Store, and a Permissions command if the app has declared any capabilities in its

manifest. (Note that Rate and Review won’t appear for apps you run from Visual Studio since they

weren’t acquired from the Store.)

The Settings charm is always available no matter where you are in the app, so you don’t need to

think about having such a command on your app bar, nor do you ever need a settings command on

your app canvas. That said, you can invoke the Settings charm programmatically, such as when you

detect that a certain capability is turned off and you prompt the user about that condition. You might

ask something like “Do you want to turn on geolocation for this app?” and if the user says Yes, you can

invoke the Settings charm. This is done through the settings pane object returned from

Windows.UI.ApplicationSettings.SettingPane.getForCurrentView, whose show method display

the UI (or throws a kindly exception if the app is in snapped view or doesn’t have the focus, so don’t

invoke it under those conditions!). The edge property of the settings pane object also tells you if it’s on

the left or right side of the screen, depending on the left-to-right or right-to-left orientation of the

system as a whole (a regional variance).

And with that we’ve covered all the methods and properties of this object! Yet the most interesting

part is how we add our own commands to the settings pane. But let’s first look at the guidelines for

using Settings.

Design Guidelines for Settings
Beyond the commands that Windows automatically adds to the settings pane, the app can provide any

number of others, typically around four. Because settings are global to an app, the commands you add

are always the same: they are not sensitive to context. To say it another way, the only commands that

should appear on the settings pane are those that are global to the app; commands that apply only to

certain pages or contexts within a page should appear on the app bar or on the app canvas. Some

examples of commands on the top-level settings pane are shown in Figure 8-2.

317

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingspane.getforcurrentview.aspx

Figure 8-2 Examples of commands on the top-level settings pane. Notice that the lower section of the pane always

has system settings and that the app name and publisher are always shown at the top. Permissions and Rate and

Review are added automatically.

Each app-supplied command can do one of two things. First, a command can simply be a hyperlink

to a web page. Some apps use links for their Help, Privacy Statement, Terms of Use, License

Agreements, and so on, which will open the linked pages in a browser. The other option is to have the

command invoke a secondary flyout panel with more specific settings controls or simply an iframe to

display web-based content. You can provide Help, Terms of Use, and other textual content in both

these ways rather than switch to the browser.

Note As stated in the Windows 8 app certification requirements, section 4.1, apps that collect

personal information in any way must have a privacy policy or statement. This must be included on the

app’s product description page in the Store as a minimum. Though not required, it is suggested that

you also include a command for this in your Settings pane.

Secondary flyouts are created with the WinJS.UI.SettingsFlyout control as we’ll see in a bit; some

examples of such settings panes are shown in Figure 8-3. Notice that the secondary settings panes

generally have two sizes: narrow (346px) and wide (646px). The design guidelines suggest that all

secondary panes for an app are the same size—that is, don’t make some narrow and some wide. You’ll

only have a couple of these panes anyway, so that shouldn’t be a problem. Also note that the

Permissions flyout, shown on the left of Figure 8-3, is provided by Windows automatically and is

configured according to capabilities declared in your manifest. Some capabilities like geolocation are

controlled in this pane; other capabilities are simply listed because the user is not allowed to turn them

on or off. Access to the Internet as well as to various user data libraries are shown this way.

318

http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx

Figure 8-3 Examples of secondary settings panes in the Travel, Weather, News, and Music apps of Windows 8. The

first three are the narrow size; the fourth is wide. Notice that each pane is branded appropriately for the app and

provides a back button to return to the main Settings pane.

A common group of settings are those that allow the user to configure their roaming experience,

which is to say, those settings that are roamed and those that are not. It is also recommended that you

include account/profile management commands within Settings, as well as login/logout functionality.

As noted in Chapter 7, logins and license agreements that are necessary to run the app at all should be

shown upon launch. For ongoing login-related functions, and to review license agreements and such,

create the necessary commands and panes within Settings. Refer to Guidelines and checklist for login

controls for more information on this subject. Guidelines for a Help command can also be found on

Adding App Help.

Behaviorally, settings panes are light-dismiss but also have a header with a back button to return to

the primary settings pane with all the commands. Because of the light-dismiss behavior, changing a

setting on a pane applies the setting immediately: there is no OK or Apply button or other such UI. If

the user wants to revert a change, she should just restore the original setting.

For this reason it’s a good idea to use simple controls that are easy to switch back, rather than

complex sets of controls that would be difficult to undo. The recommendation is to use toggle switches

for on/off values (rather than check boxes), a button to apply an action (but without closing the

settings UI), hyperlinks (to open the browser), text input boxes (which should be set to the appropriate

type such as email address, password, etc.), radio buttons for groups of up to five mutually exclusive

items, and a listbox (select) control for four to six text-only items.

In all your settings, think in terms of “less is more.” Avoid having all kinds of different settings,

because if the user is never going to find them, you probably don’t need to surface them in the first

place! Also, while a settings pane can scroll vertically, try to limit the overall size such that the user has

319

http://msdn.microsoft.com/en-us/library/windows/apps/hh965453.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965453.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465043.aspx

to pan down only once or twice.

Some other things to avoid with Settings:

 Don’t use Settings for workflow-related commands. Those belong on the app bar or on

the app canvas, as discussed in Chapter 7.

 Don’t use a top-level command in the Settings pane to perform an action other than

linking to another app (like the browser). That is, top-level commands should never

execute an action within the app.

 Don’t use settings commands to navigate within the app. Navigation is limited only to

settings panes.

 Don’t use WinJS.UI.SettingsFlyout as a general-purpose control.

And on that note, let’s now look at the steps to use the control and Settings properly!

Populating Commands
The first part of working with Settings is to provide your specific commands when the Settings charm is

invoked. Unlike app bar commands, these should always be the same no matter the state of the app; if

you have context-sensitive settings, place commands for those in the app bar.

There are two ways to implement this process in a WinRT app written in HTML and JavaScript: using

WinRT directly, or using the helpers in WinJS. Let’s look at these in turn for a simple Help command.

To know when the charm is invoked through WinRT, obtain the settings pane object through

Windows.UI.ApplicationSettings.SettingsPane.getForCurrentView and add a listener for its

commandsrequested event:

// The n variable here is a convenient shorthand

var n = Windows.UI.ApplicationSettings;

var settingsPane = n.SettingsPane.getForCurrentView();

settingsPane.addEventListener("commandsrequested", onCommandsRequested);

Within your event handler, create Windows.UI.ApplicationSettings.SettingsCommand objects for

each command, where each command has an id, a label, and an invoked function that’s called when

the command is invoked. These can all be specified in the constructor as shown below:

function onCommandsRequested(e) {

 // n is still the shortcut variable to Windows.UI.ApplicationSettings

 var commandHelp = new n.SettingsCommand("help", "Help", helpCommandInvoked);

 e.request.applicationCommands.append(commandHelp);

}

The second line of code is where you then add these commands to the settings pane itself. You do

this by appending them to the e.request.applicationCommands object, which is something called a

vector (a WinRT construct) of SettingsCommand objects that provides commands like append and

insertAt. As you can see above, it’s easy enough to append a command, and you’d make such a call

320

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingspanecommandsrequest.applicationcommands.aspx

for each command or pass an array of such commands to the replaceAll methods instead of append.

What then happens within the invoked handler for each command is the interesting part, and we’ll

come back to that in the next section.

You can also prepopulate the applicationCommands vector outside of the commandsrequested

event; this is perfectly fine because your settings commands should be constant for the app. The

Quickstart: add app help topic shows an example of this, which I’ve modified here to show the use of

replaceAll:

var n = Windows.UI.ApplicationSettings;

var settingsPane = n.SettingsPane.getForCurrentView();

var vector = settingsPane.applicationCommands;

//Ensure no settings commands are currently specified in the settings charm

vector.clear();

var commands = [new settingsSample.SettingsCommand("Custom.Help", "Help", OnHelp),

 new n.SettingsCommand("Custom.Parameters", "Parameters", OnParameters)];

vector.replaceAll(commands);

This way, you don’t actually need to register for or handle commandsrequested directly.

Now because most apps will likely use settings in some capacity, WinJS provides some shortcuts to

this whole process. First, instead of listening for the WinRT event, simply assign a handler to

WinJS.Application.onsettings (which is a wrapper for commandsrequested):

WinJS.Application.onsettings = function (e) {

 // ...

};

In your handler, create a JSON object describing your commands and store that object in the event

object, specifically e.detail.applicationcommands. Mind you, this is different from the WinRT

object—just setting this property accomplishes nothing. What comes next is passing the now-modified

event object to WinJS.UI.SettingsFlyout.populateSettings like so (taken from Scenario 2 of the

App Settings sample):

WinJS.Application.onsettings = function (e) {

 e.detail.applicationcommands =

 { "help": { title: "Help", href: "/html/2-SettingsFlyout-Help.html" } };

 WinJS.UI.SettingsFlyout.populateSettings(e);

};

The populateSettings method walks the e.details.applicationcommands object and call the

WinRT applicationCommands.append method for each item. This gives you a more compact method

to accomplish what you’d do with WinRT, and it also simplifies the implementation of settings

commands, as we’ll see next.

Implementing Commands: Links and Settings Flyouts
Technically speaking, within the invoked function you assign to any command you can really do

321

http://msdn.microsoft.com/en-us/library/windows/apps/hh465062.aspx
http://code.msdn.microsoft.com/windowsapps/App-settings-sample-1f762f49

anything. Truly! Of course, as described in the design guidelines earlier, there are recommendations for

how to use settings and how not to use them. For example, settings commands shouldn’t act like app

bar commands that affect content, nor should they navigate within the app itself. Ideally, a settings

command does one of two things: either launch a hyperlink (to open a browser) or display a secondary

settings pane.

In the base WinRT model for settings, launching a hyperlink uses the Windows.System.Launcher.-

launchUriAsync API as follows:

function helpCommandInvoked(e) {

 var uri = new Windows.Foundation.Uri("http://example.domain.com/help.html");

 Windows.System.Launcher.launchUriAsync(uri).done();

}

In the second case, secondary panes are implemented with the WinJS.UI.SettingsFlyout control.

Again, technically speaking, you’re not required to use this control: you can display any UI you want

within the invoked handler. The SettingsFlyout control, however, provides for the recommended

narrow and wide sizes, supplies enter and exit animations, fires animations like [before | after][show

| hide]41 and other such features. And since you can place any HTML you want within the control,

including other controls, and the flyout will automatically handle vertical scrolling, there’s really no

reason not to use it.

As a WinJS control, you can declare a SettingsFlyout for each one of your commands in markup

(making sure WinJS.UI.process/processAll is called, which handles any other controls in the flyout).

For example, Scenario 2 of the App Settings sample has following flyout for help (omitting the text

content and reformatting a bit), shown in Figure 8-4:

<div data-win-control="WinJS.UI.SettingsFlyout" aria-label="Help settings flyout"

 data-win-options="{settingsCommandId:'help', width:'wide'}">

 <!-- Use either 'win-ui-light' or 'win-ui-dark' depending on the contrast between

 the header title and background color; background color reflects app's personality -->

 <div class="win-ui-dark win-header" style="background-color:#00b2f0">

 <button type="button" onclick="WinJS.UI.SettingsFlyout.show()"

 class="win-backbutton"></button>

 <div class="win-label">Help</div>

 </div>

 <div class="win-content ">

 <div class="win-settings-section">

 <h3>Settings charm usage guidelines summary</h3>

 <!-- Other content omitted -->

 </div>

 </div>

</div>

41 How’s that for a terse combination of four event names?

322

http://msdn.microsoft.com/en-us/library/windows/apps/hh701480.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701480.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701253.aspx
http://code.msdn.microsoft.com/windowsapps/App-settings-sample-1f762f49

Figure 8-4 The Help settings flyout (truncated vertically) from Scenario 2 of the App Settings sample. Notice the

hyperlink on the lower right.

As always, there are options for this control as well as a few applicable win-* style classes. The only

two options are settingsCommandId, for obvious purpose, and width, which can be 'narrow' or

'wide'. We see these both in the example above. The styles that apply here are win-settingsflyout,

which styles the whole control (typically not used except for scoping other style rules), and

win-ui-light and win-ui-dark, which apply a light or dark theme to the parts of the flyout. In this

example, we use the dark theme for the header while the rest of the flyout uses the default light

theme.

In any case, you can see that everything within the control is just markup for the flyout contents,

nothing more, and you can wire up events to controls in the markup or in code. One bit I omitted from

the example is that you’re also free to use hyperlinks here, such as to launch the browser to open a

fuller Help page. You can also use an iframe to directly host web content within a settings

flyout—that’s no problem at all, and is, in fact, demonstrated in Scenario 3 of the same sample.

So how do we get this flyout to show when a command is invoked on the top-level settings pane?

The easy way is to let WinJS take care of the details using the information you provide to

WinJS.UI.SettingsFlyout.populateSettings. Here’s the example again from Scenario 2, as we saw

in the previous section:

WinJS.Application.onsettings = function (e) {

 e.detail.applicationcommands =

 { "help": { title: "Help", href: "/html/2-SettingsFlyout-Help.html" } };

 WinJS.UI.SettingsFlyout.populateSettings(e);

};

In the JSON you assign to applicationCommands, each object identifies both a command and its

associated flyout. The name of the object is the flyout id (“help”), its title property provides the

command label for the top-level settings pane (“Help” in the above), and its href property identifies

323

the HTML page where the flyout with that id is declared (“/html/2-SettingsFlyout-Help.html”).

With this information, WinJS can both populate the top-level settings pane and provide automatic

invocation of the desired flyout (calling WinJS.UI.process all along the way) without you having to

write any other code. This is why in most of the scenarios of the sample you don’t see any explicit calls

to showSettings, just a call to populateSettings.

Note The href property used with populateSettings must always refer to in-package content; it

cannot be used to create settings commands that launch a URI. For that you need to user your own

command handlers, as shown at the beginning of this section.

Programmatically Invoking Settings Flyouts

Let’s now see what’s going on under the covers. In addition to being a control that you use to define a

specific flyout, WinJS.UI.SettingsFlyout has a couple of other static methods: show and

showSettings (in addition to the static populateSettings). The show method specifically brings out

the top-level Windows settings pane—that is, Windows.UI.ApplicationSettings.SettingsPane. This

is why you see the back button’s click event in the above markup wired directly to show, because the

back button should return to that top-level UI.

The showSettings method, on the other hand, shows a specific settings flyout that you define

somewhere in your app. The signature of the method is showSettings(<id> [, <page>) where <id>

identifies the flyout you’re looking for and the optional <page> parameter identifies an HTML

document to look in if a flyout with <id> isn’t found in the current document. That is, showSettings

will always start by looking in the current document for a WinJS.UI.SettingsFlyout element that has

a matching settingsCommandId property or a matching HTML id attribute. If such a flyout is found,

that UI is shown.

If the markup above was contained in the same HTML page that’s currently loaded in the app, the

following line of code will show that flyout:

WinJS.UI.SettingsFlyout.showSettings("help");

In this case you could also omit the href part of the JSON object passed to populateCommands, but

only again if the flyout is contained within the current HTML document already.

The <path> parameter, for its part, allows you to separate your settings flyouts from the rest of your

markup; its value is a relative URI within your app package. The App Settings sample uses this to place

the flyout for each scenario into a separate HTML file. You can also place all your flyouts in one HTML

file, so long as they have unique ids. Either way, if you provide a <path>, showSettings will load that

HTML into the current page using WinJS.UI.Pages.load (which calls WinJS.UI.processAll), scans

that DOM tree for a matching flyout with the given <id>, and shows it. Failure to locate the flyout will

cause an exception.

Scenario 5 of the sample shows this form of programmatic invocation, this is also a good example

(see Figure 8-5) of a vertically scrolling flyout:

324

WinJS.UI.SettingsFlyout.showSettings("defaults", "/html/5-SettingsFlyout-Settings.html");

Figure 8-5 The settings flyout from Scenario 5 of the App Settings sample, showing how a flyout supports vertical

scrolling; note the scrollbar positions for the top portion (left) and the bottom portion (right).

A call to showSettings is thus exactly what you use within any particular command’s invoked

handler and is what WinJS sets up within populateCommands. But it also means you can call

showSettings from anywhere else in your code when you want to display a particular settings pane.

(Also see the sidebar on permissions below.) For example, if you encounter an error condition in the

app that could be rectified by changing a setting, you can provide a button in the message dialog of

notification flyout that calls showSettings to open that particular pane. And for what it’s worth, the

hide method of that flyout will dismiss it; it doesn’t affect the top-level settings pane for which you

must use Windows.UI.ApplicationSettings.SettingsPane.getForCurrentView.hide.

You might use showSettings and hide together, in fact, if you need to navigate to a third-level

settings pane. That is, one of your own settings flyouts could contain a command that calls hide on the

current flyout and then calls showSettings to invoke another. The back button of that subsidiary flyout

(and it should always have a back button) would similarly call hide on the current flyout and

showSettings to make its second-level parent reappear. That said, we don’t recommend making your

settings so complex that third-level flyouts are necessary, but the capability is there if you have a

particular scenario that demands it.

Knowing how showSettings tries to find a flyout is also helpful if for some reason you want to

create a WinJS.UI.SettingsFlyout programmatically. So long as such a control is in the DOM when

you call showSettings with its id, WinJS will be able to find it and display it like any other. It would also

work, though I haven’t tried this and it’s not in the sample, to use a kind of hybrid approach. Because

showSettings loads the HTML page you specify as a page control with WinJS.UI.Pages.load, that

page can also include its own script wherein you define a page control object with methods like

325

processed and ready. Within those methods you could then make specific customizations to the

settings flyout defined in the markup.

Sidebar: Changes to Permissions

Although you can programmatically invoke any app-specific settings flyouts, the same is not true

for those settings commands that are provided by Windows, such as Permissions. This is why the

recommendation is to simply display an error message to tell the user to invoke Permissions

rather than just opening that UI directly.

A common question along these lines is whether an app can receive events when the user

changes settings within the Permissions pane. The answer is unfortunately no, which means that

you discover whether access is disallowed only by handling Access Denied exceptions when you

try to use the capability. To be fair, though, you always have to handle denial of a capability

gracefully because the user can always deny access the first time you use the API. When that

happens, you again display a message about the disabled permission (as shown with the Here

My Am! app from Chapter 7) and provide some UI to reattempt the operation. But the user still

needs to invoke the Permissions settings manually. (Refer also to the Guidelines for devices that

access personal data for more details.)

User Data: Libraries, File Pickers, and File Queries

Now that we’ve thoroughly explored app data and app settings, we’re ready to look at the other part

of state: user data. User data, again, is all the good stuff an app might use or generate that isn’t

specifically tied to the app. Multiple apps might be able to work with the same files, such as pictures

and music, and user data always stays on a device regardless of what apps are present.

Our first concern with user data is where to put it and where to access it, which involves the various

user data libraries, removable storage, and the file pickers. Using the access cache is also important to

remember the fact that a user once granted access to a file or folder that we’re normally not allowed to

touch programmatically. The good thing about all such files and folders is that working with them

happens through the same StorageFolder and StorageFile classes we’ve already seen. The other

main topic we’ll explore is that of file queries, a richer way to enumerate the contents of folders and

libraries that lend very well to visual representations within controls like a ListView.

As we’ve seen, a WinRT app, by default, has access only to its package and its AppData folders. This

means that, by default, it doesn’t actually have any access to typical locations for user data! There are

then two ways that such access happens:

 Declare a library capability in the manifest.

 Let the user choose a location through the File Picker.

326

http://msdn.microsoft.com/en-us/library/windows/apps/Hh768223.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/Hh768223.aspx

We’ll look first at the File Picker, because in many cases it’s all you really need in an app and you

don’t need to declare any capabilities at all! But there are other scenarios—such as gallery-style

apps—where you need direct access, so there are five capabilities in the manifest for this purpose, as

shown in Figure 8-6 (left side). Three of them—Music Library, Pictures Library, and Videos

Library—grant full read-write access to the user’s Music, Pictures, and Videos folders. These appear on

the app’s product page in the Windows Store and on the Permissions settings pane, but they are not

subject to user consent at run time. Of course, if it’s not obvious why you’re declaring these

capabilities, be sure to explain yourself on your product page. And as for Documents Library and

Removable Storage, simply declaring the capability isn’t sufficient: you also need to declare specific file

type associations to which you’re then limited.

Sidebar: The Background Transfer API

A topic that’s relevant to user data, but one that we won’t cover in detail until Chapter 14,

“Networking,” is the Windows.Networking.BackgroundTransfer API of WinRT. This API allows

you to run downloads and uploads independently of app lifetime—that is, while the app is

running, suspended, or not running at all. This API is provided because transfer of large files to

and from online resources is a common need for apps but one that doesn’t really need the apps

themselves to run in the background and consume power. Instead, apps set up transfer

operations with the system that will continue if the app is shut down. When the app is

relaunched, it can then check on the status of those transfers.

Figure 8-6 Capabilities related to user data in the manifest editor (left) and the file type association editor (right).

Notice that the red X appears on Capabilities when additional declarations are needed in conjunction with this

capability. The red X on Declarations indicates that the information is not yet complete.

Using the File Picker
Although the File Picker doesn’t sound all that glamorous, it’s actually, to my mind, one of the coolest

327

http://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.backgroundtransfer.aspx

features in Windows 8. “Wait a minute!” you say, “How can a UI to pick a file or folder be, well, cool!”

The reason is that this is the place where the users can browse and select from their entire world of

data. That world includes not only what’s on their local file system or the local network, but also any

data that’s made available by what are called file picker providers. These are apps that specifically take a

library of data that’s otherwise buried behind a web service or within an app’s own database and

makes it appear as if it’s part of the local file system.

Think about this for a moment (as I invited you to do way back in Chapter 1). When you want to

work with an image from a photo service like Flickr or Picasa, for example, what do you typically have

to do? First step is to download that file to the local file system within some app that gives you an

interface to that service (which might be a web app). Then you can make whatever edits and

modifications you want, after which you typically need to upload the file back to the service. Well,

that’s not so bad, except that it’s time consuming, forces you to switch between multiple apps, and

eventually litters your system with a bunch of temporary files, the relationship of which to your online

files is quickly forgotten.

Having a file picker provider that can surface such data directly, both for reading and writing,

eliminates all those intermediate steps, along with the need to switch apps. Such a provider over a

photo service, for example, simply makes that online library appear local, allowing other apps to load

them, edit them, and save them just like consumers are already accustomed to doing but without all

the overhead and without having to leave the app they were originally using. Consuming apps, then,

don’t need to know anything about those other services, and they automatically have access to more

services as more provider apps are installed. What’s more, providers can also make data that isn’t

normally stored as files appear as though they are. For example, the Windows 8 Camera app is a file

picker provider, where through that contract you can activate your camera, take a picture, and have it

returned as if you loaded it from the file system. All of this gives users a very natural means to flow in

and out of data no matter where it’s stored. Like I said, I think this is a very cool feature!

We’ll look more at the question of providers in Chapter 12. Our more immediate concern is how we

make use of these file pickers. This goes back to the earlier question about how you work with files in

WinRT, the answer to which is that you had to start with some API that gives you a StorageFile or

StorageFolder object. And again, the file picker is just such an API.

The File Picker UI

Before looking at the code, let’s familiarize ourselves with the file picker UI itself. When invoked, you’ll

see a full-screen view like that in Figure 8-7, which shows the picker in single-selection mode with a

“thumbnail” view. In such a view, items are shown as images in a ListView, with a rich tooltip control

appearing when you hover over an item (and I did change my color scheme now to a rich green rather

than the dark copper). In a way, the file picker itself is like an app that’s invoked for this purpose, and

it’s designed to be beautiful and immersive just like other WinRT apps.

328

Figure 8-7 A single-selection file picker on the Pictures library in thumbnail view mode, with a hover tooltip

showing for one of the items (the head of the Sphinx) and the selection frame showing on another (the Taj Mahal).

In Figure 8-7, the Pictures heading shows the current location of the picker. The Sort By Name

drop-down list lets you choose other sorting criteria, and the drop-down list next to the Files header

lets you choose other locations, as shown in Figure 8-8. These locations include other areas of the file

system (though never protected areas like the Windows folder or Program Files), network locations,

and other provider apps. Note that app options are not provided in the folder picker—just the file

picker.

329

Figure 8-8 Selecting other locations in which to browse files; notice that apps are listed along with file system

locations.

Choosing another file system location navigates there, of course, from which you can browse into

other folders. Selecting an app, on the other hand, launches that app through the file picker provider

contract, in response to which it configures itself to serve in that capacity like the Camera app in Figure

8-9, even to the point where the drop-down list next to the heading lets you easily switch back to

other picker locations. In short, a provider app really is just an extension to the File Picker UI, but a very

powerful one at that. And ultimately such an app just returns an appropriate StorageFile object that

makes its way back to the original app. It’s quite a lot happening with just a single call to the file picker

API!

Figure 8-9 The camera app invoked through the file picker provider contract. Where did that nuthatch come from?

The file picker has a couple of other modes. One is the ability to select multiple files—even from

different apps!—as shown in Figure 8-10, where all the selections are placed into what’s called the

basket on the bottom of the screen. The picker can also be used to select a folder, as shown in Figure

8-11, or a save location and filename, as shown in Figure 8-12.

330

Figure 8-10 The file picker in multiselect mode with the selection basket at the bottom. What shown here is also

the “list” view mode that’s set independently from the selection mode.

Figure 8-11 The file picker used to select a folder.

331

Figure 8-12 The file picker used to select a save location and filename.

The File Picker API (and a Few Friends)

Now that we’ve seen the visual results of the file picker, let’s see how we invoke it from our app code

through the API in Windows.Storage.Pickers. All the images we just saw came from the Access and

save files using the file picker sample (love the name!), so we’ll also use that as the source of our code.

For starters, Scenario 1 in its pickSinglePhoto function (scenario1.js) shows how to use the picker

to obtain a single StorageFile for opening (which implies both reading and writing, as picking a save

location implies a Save As to change the filename):

function pickSinglePhoto() {

 // Verify that we are currently not snapped, or that we can unsnap to open the picker

 var currentState = Windows.UI.ViewManagement.ApplicationView.value;

 if (currentState === Windows.UI.ViewManagement.ApplicationViewState.snapped &&

 !Windows.UI.ViewManagement.ApplicationView.tryUnsnap()) {

 // Fail silently if we can't unsnap

 return;

 }

 // Create the picker object and set options

 var openPicker = new Windows.Storage.Pickers.FileOpenPicker();

 openPicker.viewMode = Windows.Storage.Pickers.PickerViewMode.thumbnail;

 openPicker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.picturesLibrary;

 // Users expect to have a filtered view of their folders depending on the scenario.

 // For example, when choosing a documents folder, restrict the filetypes to documents

 // for your application.

 openPicker.fileTypeFilter.replaceAll([".png", ".jpg", ".jpeg"]);

 // Open the picker for the user to pick a file

 openPicker.pickSingleFileAsync().done(function (file) {

 if (file) {

332

http://msdn.microsoft.com/en-us/library/windows/apps/br207928.aspx
http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba
http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba

 // Application now has read/write access to the picked file

 } else {

 // The picker was dismissed with no selected file

 }

 });

}

As you can see, you should not try to invoke the File Picker when in snapped view; this will, like the

Settings Pane, cause an exception. You can check for such a condition ahead of time, as shown here, or

you can add an error handler within the done at the end.42 In any case, to invoke the picker we create

an instance of Windows.Storage.Pickers.FileOpenPicker, configure it and then call its

pickSingleFileAsync method. The result of pickSingleFileAsync is the file argument given to the

completed handler, which will be either a StorageFile object for the selected file or null if the user

canceled.

With the configuration, here we’re setting the picker’s viewMode to thumbnail (from the

enumeration Windows.Storage.Pickers.PickerViewMode), resulting in the view of Figure 8-7. The

other possibility here is list, which gives a view like Figure 8-10.

We also set the suggestedStartLocation to the picturesLibrary, which is a value from the

Windows.Storage.Pickers.PickerLocationId enumeration; other possibilities are

documentsLibrary, computerFolder, desktop, downloads, homeGroup, musicLibrary, and

videosLibrary, basically all the other locations you see in Figure 8-8. Note that using these locations

does not require you to declare capabilities in your manifest because by using the picker, the user is

giving consent for you to access those files. If you check the manifest in this sample, you’ll see that no

capabilities are declared at all.

The one other property we set is the fileTypeFilter (a FileExtensionVector object) to indicate

the type of files we’re interested in, which are PNG and JPEG files in this case. Beyond that, the

FileOpenPicker also has a commitButtonText property, which controls the label of the primary button

in the UI (the one that’s not Cancel), and settingsIdentifier, a means to essentially remember

different contexts of the file picker. For example, an app might use one identifier for selecting pictures,

where the starting location is set to the pictures library and the view mode to thumbnails, and another

id for selecting documents with a different location and perhaps a list view mode.

This sample, as you can also see, doesn’t actually do anything with the file once it’s obtained, but it’s

quite easy to see what we might do. We can, for instance, simply pass the StorageFile to

URL.createBlobURL and assign the result to an img.src property to display the contents of that file.

The same thing could be done with audio and video as well, possibilities that are all demonstrated in

Scenario 1 of the Using a blob to save and load content sample I mentioned earlier in this chapter.

That same sample also shows reading the file contents through the HTML FileReader API, something

that you could also do with other WinRT and WinJS APIs, as we’ve seen. You could also transcode an

42 The sample, it should be noted, uses then instead of done on that last async call; while then works, it should actually be

done especially if you’re going to handle exceptions there.

333

http://msdn.microsoft.com/en-us/library/windows/apps/br207847.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.fileextensionvector.aspx
http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e

image (or other media) in the StorageFile to another format (as we’ll see in Chapter 10), retrieve

thumbnails as shown in the Retrieve thumbnails for files and folders sample, or use the StorageFile

methods to make a copy in another location, rename the file, and so forth. But from the file picker’s

point of view, its particular job was well done!

Returning now to the file picker sample, picking multiple files is pretty much the same story as

shown in the pickMultipleFiles function of scenario2.js, except that here we’re using the list view

mode and starting off in the documentsLibrary. Again, these start locations don’t require capability

declarations in the manifest:43

function pickMultipleFiles() {

 // Verify that we are currently not snapped, etc... (some code omitted)

 // Create the picker object and set options

 var openPicker = new Windows.Storage.Pickers.FileOpenPicker();

 openPicker.viewMode = Windows.Storage.Pickers.PickerViewMode.list;

 openPicker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.documentsLibrary;

 openPicker.fileTypeFilter.replaceAll(["*"]);

 // Open the picker for the user to pick a file

 openPicker.pickMultipleFilesAsync().done(function (files) {

 if (files.size > 0) {

 // Application now has read/write access to the picked file(s)

 } else {

 // The picker was dismissed with no selected file

 }

 });

}

When picking multiple files, the result of pickMultipleFilesAsync is a

FilePickerSelectedFilesArray object, which you can access like any other array using [] (though it

has limited methods otherwise).

Scenario 3 of the sample shows a call to pickSingleFolderAsync (see the pickFolder function in

scenario3.js), where the result of the operation is a StorageFolder. Here you must indicate a

fileTypeFilter that’s relevant to the purpose of picking a folder; this helps users pick an appropriate

location in which to enumerate files or perhaps create new ones:

function pickFolder() {

 // Verify that we are currently not snapped... (some code omitted)

 // Create the picker object and set options

 var folderPicker = new Windows.Storage.Pickers.FolderPicker;

 folderPicker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.desktop;

 folderPicker.fileTypeFilter.replaceAll([".docx", ".xlsx", ".pptx"]);

 folderPicker.pickSingleFolderAsync().then(function (folder) {

 if (folder) {

43 Again, the actual sample uses then instead of done on the async call; I show done here which is the better choice.

334

http://code.msdn.microsoft.com/windowsapps/File-thumbnails-sample-17575959
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.filepickerselectedfilesarray.aspx

 // Cache folder so the contents can be accessed at a later time

 Windows.Storage.AccessCache.StorageApplicationPermissions.futureAccessList

 .addOrReplace("PickedFolderToken", folder);

 } else {

 // The picker was dismissed with no selected file

 }

 });

}

In this example we also see how to save that selected StorageFolder in the Windows.Storage.-

AccessCache for future use. Again, by selecting this folder the user has granted the app programmatic

access to its contents. However, that access is limited to the current session. To maintain that access,

the app must save the storage item in the futureAccessList of the cache, where it can be later

retrieved using the futureAccessList.getFolderAsync, getItemAsync, or getFileAsync methods

(where access to files obtained from another app could trigger an update from a source, if the app

supports that cached file updating, as we’ll see in Chapter 12). As before, refer to Scenario 6 of the File

Access sample for more on this feature, and note that the AccessCache API also provides for recently

used items as well.

For the final file picker use case, Scenario 4 of the file picker sample creates a FileSavePicker

object and calls its pickSaveFileAsync method, resulting in the UI of Figure 8-12:

function saveFile() {

 // Verify that we are currently not snapped... (some code omitted)

 // Create the picker object and set options

 var savePicker = new Windows.Storage.Pickers.FileSavePicker();

 savePicker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.documentsLibrary;

 // Dropdown of file types the user can save the file as

 savePicker.fileTypeChoices.insert("Plain Text", [".txt"]);

 // Default file name if the user does not type one in or select a file to replace

 savePicker.suggestedFileName = "New Document";

 savePicker.pickSaveFileAsync().done(function (file) {

 if (file) {

 // Prevent updates to the remote version of the file until we finish making changes

 // and call CompleteUpdatesAsync.

 Windows.Storage.CachedFileManager.deferUpdates(file);

 // write to file

 Windows.Storage.FileIO.writeTextAsync(file, file.name).done(function () {

 // Let Windows know that we're finished changing the file so the other app

 // can update the remote version of the file.

 // Completing updates might require Windows to ask for user input.

 Windows.Storage.CachedFileManager.completeUpdatesAsync(file)

 .done(function (updateStatus) {

 if (updateStatus === Windows.Storage.Provider.FileUpdateStatus.complete) {

 } else {

 // ...

 }

 }

 });

335

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.accesscache.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.accesscache.aspx
http://code.msdn.microsoft.com/windowsapps/File-access-sample-d723e597
http://code.msdn.microsoft.com/windowsapps/File-access-sample-d723e597
http://msdn.microsoft.com/en-us/library/windows/apps/br207871.aspx

 });

 } else {

 // The picker was dismissed

 }

 });

}

The FileSavePicker has many of the same properties as the FileOpenPicker, but it replaces

fileTypeFilter with fileTypeChoices (to populate the drop-down list) and includes a

suggestedFileName (a string), suggestedSaveFile (a StorageFile), and defaultFileExtension (a

string). What’s interesting in the code above is that once a file is saved, we use the

Windows.Storage.CachedFileManager to defer updates to the file we’re saving until all our async

write operations are complete. This is done, as the comments suggest, to make sure that the file picker

provider doesn’t try to update the data on a service or other remote resource until we’ve actually

written what we need. And what you see here with the CachedFileManager is all there is to it: just use

this pattern any time you save a file obtained from a file picker because it might be coming from a

remote source. The CachedFileManager will take care of notifying the source as necessary.

You should also use this same pattern when you save a file obtained from the access cache as well,

because it might have come from a file picker originally. You wouldn’t, on the other hand, employ this

pattern for files that you know are local and always accessible, like those in your AppData folders.

Media Libraries
Now that we’ve seen understood the capabilities of the file picker, we can turn our attention to the

other libraries. But before you start checking off capabilities in your manifest, pause for a moment to

ask this: are those capabilities actually needed? The file pickers provide very extensive access to all

these libraries without needing those capabilities at all. Through the pickers you can have the user

select one or more files to open, manipulate, and save; the user can indicate a folder to which you’ll

then have access; and the user can indicate a new filename in which to save user data.

You only need specific library access, then, if you’re going to work within any of these libraries

without using the file picker. For example, if you want to enumerate the contents of the Pictures of

Music folder to create a data source for a ListView or FlipView control, as we did in Chapter 5, you do

need to declare the capability. The WinJS.UI.StorageDataSource object we used back then does

exactly this.

We can be even more specific. Without going through the file picker, there is only one way to gain

programmatic access to the media libraries if you’ve declared the capability: obtain a StorageFolder

from the Windows.Storage.KnownFolders object (the StorageDataSource uses this internally). For

media, the applicable properties here are picturesLibrary, musicLibrary, and videosLibrary.

Without the appropriate capability, trying to retrieve these will throw an access denied exception.

In short, if you don’t find a need to use access KnownFolders, you don’t need to declare the

capabilities! And remember that since all your declared capabilities are listed for your app in the

Windows Store and might make consumers think twice about installing your app, fewer is definitely

336

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.cachedfilemanager.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.knownfolders.aspx

better.

Either way, working with media libraries involves StorageFolder and StorageFile objects pretty

much like any other storage location. One difference, however, is that you can work with the metadata

often included with media files; we’ll see a little more of this in Chapter 10.

Documents and Removable Storage
As with the media libraries, access to the user’s documents folder as well as removable storage devices

are controlled by capability declarations, and aside from the file picker the only way to get an

appropriate StorageFolder is through Windows.Storage.KnownFolders (specifically,

documentsLibrary and removableDevices). In the latter case, you get a StorageFolder that contains

a subfolder for each removable device.

Again, before you start working on your manifest, ask yourself if you really need open access to

these folders or whether the file pickers are entirely sufficient. If you can’t think of why, exactly, you’d

access KnownFolders, then you don’t actually need to declare the capability. I say this because

developers have, in the past, mistakenly assumed that they needed documentsLibrary access just to

save and load arbitrary user data, but that’s not actually true. It’s really needed only if you’re going to

create your own file-browsing UI or otherwise enumerate folder contents. In fact, when you try to

upload an app to the Windows Store that declared documents library access, you’ll be asked to

indicate exactly how it’s being used.

Even when you do declare the capabilities for documents and removable devices, access is yet

restricted to specific file types you declare in the Declarations section of your manifest. And here’s the

rub: by declaring associations for those file types, you are also declaring that your app is available to

service files of that type at any time. For example, the Removable storage sample in the SDK, in order

to demonstrate access to removable devices, declares associations with .gif, .jpg, and .png files. As a

result, it shows up in Open With lists like the context menu of Windows Explorer on the desktop and

the default program selector:

The same is also true for documents (see the File Access sample again), so unless your app is really

337

http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0
http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000

positioned to service those file types, you probably don’t need these capabilities. After all, a user can

grant you access to a whole folder through the folder picker, so perhaps you simply need to ask the

user to choose a storage location for your particular data files.

How exactly to declare file type associations is a form of contracts, so we’ll cover the details in

Chapter 12.

Rich Enumeration with File Queries
When you are ready to enumerate files within a particular location, what you’ll be using for that

purpose is a file query or, simply, a search. This is essential if you’re going to show files in a UI of some

kind, because file queries account for the fact that you normally want more metadata for the files you

enumerate than just the file or pathnames along. Windows 8 in general is very visual, and so file

queries strongly support acquiring visual data along with the textual or factual.

Queries always start with a StorageFolder, whose createFileQuery[WithOptions],

createFolderQuery[WithOptions], and createItemQuery[WithOptions] methods (6 total) provide

for enumerating files, folders, or both, within whatever folder the StorageFolder is attached to.

That’s at least the simple way of looking at it! On the deepest level, these APIs they are capable of

working with Advanced Query Syntax (AQS) searches on folder contents, going deep into all the

subfolders as well.44 They tie into a set of search features available in the Windows.Storage.Search

namespace, which opens up many vistas that we won’t be able to fully explore here (the rabbit hole

goes very deep!). What’s most helpful to understand is that file queries let you retrieve collections of

files in many different “shapes” such as a flat list, a hierarchy, and various sort orders including those

oriented around media properties. In addition, file queries also provide for obtaining thumbnails as

well as automatic retrieval of album art for music.

We’ll be looking at some of the media-specific feature of file queries in Chapter 10. Here, let’s

concentrate on understanding how file queries work, starting with the basics that are demonstrated in

the FileQuery example included with this chapter’s companion content. This example is a copy of the

Query sample from the Windows SDK, which itself has only one scenario oriented on the music library

that lets you enter in an AQS string directly. However, this isn’t always what you’ll be using in an app,

so I wanted to show many other variations.

The simplest queries are created with the base StorageFolder.create* methods and no

parameters:

folder.createFileQuery();

folder.createFolderQuery();

folder.createItemQuery();

44 Note that contrary to any examples in the docs, apps should always use the full name of Windows properties in queries

such as System.ItemDate: rather than the user-friendly shorthand such as date: because the latter will not work on

localized builds of Windows.

338

http://msdn.microsoft.com/en-us/library/windows/desktop/bb266512.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br208106.aspx
http://code.msdn.microsoft.com/windowsapps/Programmatically-searching-25e1a56b
http://msdn.microsoft.com/en-us/library/windows/desktop/dd561977.aspx

The first two methods here are actually just shortcuts for the one-parameter variants with the same

names, where that parameter is a value from the Windows.Storage.Search.CommonFileQuery or

CommonFolderQuery enumerations. These shortcut versions just use the defaultQuery value for a

simple alphabetical, shallow enumeration of the folder contents. createItemQuery, for its part, has

only this one form.

Creating a query itself doesn’t actually enumerate anything until you ask it to through an async

method: for file queries, the method is getFilesAsync; for folders it’s getFoldersAsync; and for items

it’s getItemsAsync. (See a pattern here?) So in Scenario 2 of the FileQuery example I have these three

functions attached to buttons:

function fileQuery() {

 var query = picturesLibrary.createFileQuery();

 SdkSample.showResults(query.getFilesAsync());

}

function folderQuery() {

 var query = picturesLibrary.createFolderQuery();

 SdkSample.showResults(query.getFoldersAsync());

}

function itemQuery() {

 var query = picturesLibrary.createItemQuery();

 SdkSample.showResults(query.getItemsAsync());

}

where the SdkSample.showResults function in default.js just takes the promise from each async

operation, calls its done method, and creates a listing of the items in the collection. Running this

sample you’ll see then a list of files and/or folders in your pictures library in the app’s output area.

Tip The actual object types returned by these create*Query APIs are StorageFileQueryResult,

StorageFolderQueryResult, and StorageItemQueryResult, all in the Windows.Storage.Search

namespace. These all provide some additional properties like folder, methods like

findStartIndexAsync and getItemCountAsync, and events like optionschanged and

contentschanged. The latter event especially is something you can use to monitor changes to the file

system that affect query results.

Beyond this shallow default behavior, file and folder queries have many other possibilities as

expressed in the CommonFileQuery and CommonFolderQuery enumerations:

 CommonFileQuery: orderByName, orderByTitle, orderByDate,

orderByMusicProperties, and orderBySearchRank.

 CommonFolderQuery: groupByType, groupByTag, groupByAuthor, groupByYear,

groupByMonth, groupByArtist, groupByComposer, groupByGenre,

groupByPublishedYear, and groupByRating.

Clearly, the effect of these choices depends on the queried items actually containing metadata that

339

would support the ordering or grouping, but it is allowable to query all folders for all types of files and

folders. To demonstrate this, Scenario 3 of the FileQuery example lets you choose the music, pictures,

or videos library; whether to query files or folders; and an applicable common query to apply; and then

run a search to see the results (for whatever files you have in your music, pictures, and videos libraries,

of course). Do note that using orderBySearchRank with files isn’t really meaningful in this context

because it’s meant to work with AQS-based searches. We’ll see this a little later. (Also—call me a

slacker!—the results of a grouped folder query isn’t very interesting when one doesn’t group the

display output, but for an example of that you can refer to Scenario 2 of the Enumerate files and

folders in a location sample.)

The code in scenario3.js is pretty much just the mechanics of mapping your UI selections to either

createFileQuery or createFolderQuery with the right parameters, so there’s no need to look at most

of it here. The one piece that is important to point out is the use of the isCommonFileQuerySupported

and isCommonFolderQuerySupported methods of StorageFolder. These are used to test whether the

current folder will actually support the particular query you want to try:

if (folder.isCommonFileQuerySupported(selectedQuery)) {

 query = folder.createFileQuery(selectedQuery);

 if (query) {

 promise = query.getFilesAsync();

 }

}

You’ll find when running the sample that in the media libraries, at least, all the common file and

folder queries are supported, but that might not be true for all StorageFolder objects you might

encounter. Remember, for example, that the folder picker might give you a StorageFolder from a

provider whose data is off in some online service or a database, in which case certain queries might not

work.

A similar method, StorageFolder.areQueryOptionsSupported, also exists to tests support for

custom queries beyond the common ones. A custom query is described by a

Windows.Storage.Search.QueryOptions object (the common queries are just prepopulated instances

of these) and is created by passing such an object to the createFileQueryWithOptions,

createFolderQueryWithOptions, and createItemQueryWithOptions.

A QueryOptions is generally created from scratch using the new operator, after which you populate

its properties. You can also use new QueryOptions(<CommonFolderQuery>) to retrieve the object for

one of the common folder queries, and new QueryOptions(<CommonFileQuery> [, <file type

filter>]) to do the same for common file queries. In this latter case, an optional array of file types

can also be given; this is a shortcut to quickly customize a common query with a specific set of file

types. Without it, the filter is set to "*" by default. That is, if you wanted to just find .mp3 files in your

music library ordered by title, you would use this kind of code (see scenario4.js in the FileQuery

example):

var musicLibrary = Windows.Storage.KnownFolders.musicLibrary;

var options = new Windows.Storage.Search.QueryOptions(

 Windows.Storage.Search.CommonFileQuery.orderByTitle, [".mp3"]);

340

http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000
http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.search.queryoptions.aspx

if (musicLibrary.areQueryOptionsSupported(options)) {

 var query = musicLibrary.createFileQueryWithOptions(options);

 SdkSample.showResults(query.getFilesAsync());

}

If you create a QueryOptions from scratch, you can set a number of options. The more general or

basic ones are as follows:45

 fileTypeFilter An vector of strings that describe the desired file type

extensions, as in ".mp3". The default is an empty list (no filtering).

 folderDepth Either Windows.Storage.Search.FolderDepth.shallow (the default) or

deep.

 indexerOption A value from Windows.Storage.Search.IndexerOption, which is one

of useIndexerWhenAvailable, onlyUseIndexer (limit the search to indexed content

only), and doNotUseIndexer (query the file system directly bypassing the indexer). As

the latter is the default, you’ll typically want to explicitly set this property to

useIndexerWhenAvailable.

 sortOrder A vector of Windows.Storage.Search.SortEntry structures that each

contain a Boolean named ascendingOrder (false for descending order) and a

propertyName string. Each entry in the vector defines a sort criterion; these are applied

in the order they appear in the vector. An example of this will be given a little later.

Three of the QueryOptions properties then apply to searches with AQS strings:

 applicationSearchFilter An AQS string.

 userSearchFilter Another AQS string.

 language A string containing the BCP-47 language tag associated with the AQS

strings.

When the query is built through a method like createFileQueryWithOptions, the application and

user filter strings here are combined. What this means is that you can separately manage any filter you

want to apply generally for your app (applicationSearchFilter) from user-supplied search terms

(userSearchFilter). This way you can enforce some search filters without requiring the user to type

them in, and without always having to combine strings yourself.

As noted before, the CommonFileQuery.orderBySearchRank query is meaningful only when

combined with an AQS string, which is to say that keyword-based searches return ranked results for

which this common file query would apply. Returning to Scenario 1 of the Query sample, then, we see

how it uses this ordering along with the userSearchFilter property:

45 Another property, dateStackOption (a value from Windows.Storage.Search.DateStackOption), is read-only within

this structure but can be set when creating a QueryOptions from a CommonFolderQuery.

341

var musicLibrary = Windows.Storage.KnownFolders.musicLibrary;

var options = new Windows.Storage.Search.QueryOptions(

 Windows.Storage.Search.CommonFileQuery.orderBySearchRank, ["*"]);

options.userSearchFilter = searchFilter;

var fileQuery = musicLibrary.createFileQueryWithOptions(options);

On my machine, where I have a number of songs with “Nightingale” in the title, as well as an album

called “Nightingale Lullaby,” a search using the string "Nightingale" System.ItemType: "mp3" in the

above code gives me results that look like this in the sample:46

This shows that the search ranking favors songs with “Nightingale” directly in the title, but also

include those from an album with that name.

My search string here, by the way, shows how you might use the applicationSearchFilter and

userSearchFilter properties together. If my app was capable of working only with mp3 or some

other formats, I could store "type: 'mp3'" in applicationSearchFilter and store user-provided

terms like "Nightingale" in userSearchFilter. This way I avoid having to join them manually in my

code.

Beyond the properties that you set within a QueryOptions object, it also has some information and

capabilities of its own. The groupPropertyName, for one, is a string property that indicates the type of

property that the query is being grouping by. You can also retrieve the query options as a string using

the saveToString method and recreate the object from a string using loadFromString (that is, the

analog of JSON.stringify and JSON.parse).

The setPropertyPrefetch method goes even deeper still, allowing you to indicate a group of file

properties that you want to optimize for fast retrieval—they’re accessed through the same APIs as file

properties in general, but they come back faster, meaning that if you’re displaying a collection of files

in a ListView using a custom data source with certain properties from enumerated files, you’d want to

set those up for prefetch so that the control renders faster. (The WinJS.UI.StorageDataSource does

this already.) Similarly, setThumbnailPrefetch tells Windows what kinds of thumbnails you want to

include in the enumeration—again, you can ask for these without setting the prefetch, but they come

46 For more on AQS, again refer to the Advanced Query Syntax (AQS) topic as well as Using Advanced Query Syntax

Programmatically. Again, then creating queries programmatically, be sure to use the full name like System.ItemType and

not the shorthand form like type to identify the desired Windows properties.

342

http://msdn.microsoft.com/en-us/library/windows/desktop/bb266512.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/bb266512.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/bb266512.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd561977.aspx

back faster when you do. This again helps you optimize the display of a file collection.47

We briefly saw similar usage of thumbnail properties back in Chapter 5, when we took advantage of

a shortcut to the pictures library with WinJS.UI.StorageDataSource and could specify a thumbnail

size option:

myFlipView.itemDataSource = new WinJS.UI.StorageDataSource("Pictures",

 { requestedThumbnailSize: 480 });

A more general example that also includes the QueryOptions.sortOrder vector can be found in

the StorageDataSource and GetVirtaulizedFilesVector sample, which got a footnote in Chapter 5. In its

scenario2.js we see the creation of a QueryOptions from scratch, setting up two sortOrder criteria, and

setting up thumbnail options in the data source:

function loadListViewControl() {

 // Build datasource from the pictures library

 var library = Windows.Storage.KnownFolders.picturesLibrary;

 var queryOptions = new Windows.Storage.Search.QueryOptions;

 // Shallow query to get the file hierarchy

 queryOptions.folderDepth = Windows.Storage.Search.FolderDepth.shallow;

 queryOptions.sortOrder.clear();

 // Order items by type so folders come first

 queryOptions.sortOrder.append({ ascendingOrder: false, propertyName: "System.IsFolder" });

 queryOptions.sortOrder.append({ ascendingOrder: true, propertyName: "System.ItemName" });

 queryOptions.indexerOption = Windows.Storage.Search.IndexerOption.useIndexerWhenAvailable;

 var fileQuery = library.createItemQueryWithOptions(queryOptions);

 var dataSourceOptions = {

 mode: Windows.Storage.FileProperties.ThumbnailMode.picturesView,

 requestedThumbnailSize: 190,

 thumbnailOptions: Windows.Storage.FileProperties.ThumbnailOptions.none

 };

 var dataSource = new WinJS.UI.StorageDataSource(fileQuery, dataSourceOptions);

 // Create the ListView...

};

If you’re really interested in digging deeper here, you can look at how StorageDataSource sets up

file queries; just search for this class in the ui.js file of WinJS and you’ll find it. Along the way, you’ll run

into one more set of WinRT APIs—perhaps the bottom of the hole!—that I wanted to mention before

wrapping up this subject: Windows.Storage.BulkAccess. These actually exist solely for use by

StorageDataSource and are not intended for direct use in apps. Even if you create your own data

source or collection control, it’s best to just use the enumeration and prefetch APIs we’ve already

discussed, as they give identical performance.

47 See What’s Changed for App Developers Since the Consumer Preview on the Windows 8 Developer Blog for a few more

details on these.

343

http://code.msdn.microsoft.com/windowsapps/Data-source-adapter-sample-3d32e535
http://blogs.msdn.com/b/windowsappdev/archive/2012/05/31/what-s-changed-for-app-developers-since-the-consumer-preview.aspx

Here My Am! Update

To bring together some of the topics we’ve covered in this chapter, the companion content includes

another revision of the Here My Am! app with the following changes and additions (mostly to home.js

unless notes):

 It now incorporates the Bing Maps SDK so that the control is part of the package rather

than loaded from a remote source. This eliminates the iframe we’ve been using to host

the map, so all the code from html/map.html can move into default.js. Note that to run

this sample in Visual Studio you need to download and install the SDK yourself.

 Instead of copying pictures taken with the camera to app data, those are now copied to

a HereMyAm folder in the Pictures library. The Pictures Library capability has been

added in the manifest.

 An appbar command now allows you to use the File Picker to select an image to load

instead of relying solely on the camera. This also allows you to use a camera app, if

desired. Note that we use a particular settingsIdentifier with the picker in this case

to distinguish from the picker for recent images.

 Another appbar command allows you to choose from recent pictures from the camera.

This defaults to our folder in the Pictures library and uses a different

settingsIdentifier.

 Additional commands for About, Help, and a Privacy Statement are included on the

Settings pane using the WinJS.Application.onsettings event (see default.js). The first

two display content from within the app whereas the third pulls down web content in

an iframe; all the settings pages are found in the html folder of the project.

What We’ve Just Learned

 Statefulness is important to WinRT apps, to maintain a sense of continuity between

sessions even if the app is suspended and terminated.

 App data is session, local, temporary, and roaming state that is tied to the existence of

an app; it is accessible only by that app.

 User data is stored in locations other than app data (such as the user’s music, pictures,

videos, and documents libraries) and persists independent of any given app, and

multiple apps might be able to open and manipulate user files.

 App data is accessed through the Windows.Storage.ApplicationData API and

accommodates both structured settings containers as well as file-based data. Additional

APIs like IndexedDB and HTML5 localStorage are also available.

344

http://visualstudiogallery.msdn.microsoft.com/0c341dfb-4584-4738-949c-daf55b82df58

 It is important to version app state, especially where roaming is concerned, as

versioning is how the roaming service manages what app state gets roamed to which

devices based on what version apps are looking for.

 Roaming state is limited to about 100K, otherwise Windows will not roam the data.

Services like SkyDrive can be used to roam larger files, including user data.

 The typical roaming period is 30 minutes or less. A single setting or composite named

“HighPriority,” so long as it’s under 8K, will be roamed within a minute.

 The StorageFolder and StorageFile classes in WinRT are really the core object for

working with folders and files. All programmatic access to the file system begins, in fact,

with a StorageFolder. Otherwise, the user can point to files and folders through the file

picker API, which is really the first choice for file access.

 Blobs are also very useful aids in working with files, and WinRT provide some simpler

APIs in the Windows.Storage.FileIO and PathIO classes. WinJS offers some simplified

methods for reading and writing text files (especially in conjunction with app state), and

the HTML5 FileReader is supported.

 WinRT offers encryption services through Windows.Security.Cryptography, as well as

a built-in compression mechanism in Windows.Storage.Compression.

 To use the Settings pane, an app populates the top-level pane provided by Windows

with specific commands. Those commands map to handlers that either open a

hyperlink (in a browser) or display a settings flyout using the

WinJS.UI.SettingsFlyout control. Those flyouts can contain any HTML desired,

including iframe elements that load remote content.

 Access to user data folders, such as media libraries, documents, and removable storage,

is controlled by manifest capabilities. Such capabilities need be declared only if the app

needs to access the file system in some way other than using the file picker.

 The file picker is the way that users can select files from any safe location in the file

system, as well as files that are provided by other apps (where those files might be

remote, stored in a database, or otherwise not present as file entities on the local file

system). The ability to select files directly from other apps—including files that another

app might generate on demand—is one of the most convenient and powerful features

of WinRT apps.

 StorageFolder objects provide a very rich and extensive capability to query and search

its contents through file queries. These queries can be simple to complex and can

employ Advanced Query Syntax (AQS) search strings.

345

Chapter 9

Input and Sensors

Touch is clearly one of the most exciting means of interacting with a computer that has finally come of

age. Sure, we’ve had touch-sensitive devices for many years: I remember working with a touch-enabled

screen in my college days, which I have to admit is almost an embarrassingly long time ago now! In

that case, the touch sensor was a series of transparent wires embedded in a plastic sheet over the

screen, with an overall touch resolution of around 60 wide by 40 high…and, to really date myself, the

monitor itself was only a text terminal!

Fortunately, touch screens have progressed tremendously in recent years. They are responsive

enough for general purpose use (that is, you don’t have to stab them to register a point), are built into

high-resolution displays, are relatively inexpensive, and are capable of doing something more than

replicating the mouse—namely, supporting multitouch and sophisticated gestures.

Great touch interaction is thus now a fundamental feature of great apps, and designing for touch in

many ways means thinking through UI concerns anew. In your layout, for example, it means making hit

targets a size that’s suitable for a variety of fingers. In your content navigation, it means utilizing direct

gestures such as swipes and pinches rather than relying on only item selection and navigation controls.

Similarly, designing for touch means thinking though how gestures might enrich the user

experience—and also how to provide for discoverability and user feedback that has generally relied on

mouse-only events like hover.

All in all, approach your design as if touch was the only means of interaction that your users might

have. At the same time, it’s very important to remember that new methods of input seldom obsolete

existing ones. Sure, punch cards did eventually disappear, but the introduction of the mouse did not

obsolete keyboards. The availability of speech recognition or handwriting has obsoleted neither mouse

nor keyboard. I think the same is true for touch: it’s really a complementary input method that has its

own particular virtues but is unlikely to wholly supplant the others. As Bill Buxton of Microsoft Research

has said, “Every modality, including touch, is best for something and worst for something else.” I

expect, in time, we’ll see ourselves using keyboard, mouse, and touch together, just as we learned to

integrate the mouse in what was once a keyboard-only reality.

Windows is designed to work well with all forms of input—to work great with touch, to work great

with mice, to work great with keyboards, and, well, to just work great on diverse hardware! For this

reason, Windows provides a unified pointer-based input model wherein you can differentiate the

different inputs if you really need to but can otherwise treat them equally. You can also focus more on

higher-level gestures as well, which can arise from any input source, and not worry about raw pointer

events at all. Indeed, the very fact that we haven’t even brought this subject up until now, midway

through this book, gives testimony to just how natural it is to work with all kinds of pointer input

without having to think about it: the controls and other UI elements we’ve been using have done all

346

that work for us. Handling such events ourselves thus arises primarily when creating your own controls

or otherwise doing direct manipulation of noncontrol objects.

The keyboard also remains an important consideration, and this means both hardware keyboards

and the on-screen “soft” keyboard. The latter has gotten more attention in recent years for touch-only

devices but actually has been around for some time for accessibility purposes. In Windows, too, the soft

keyboard includes a handwriting recognizer—something apps just get for free. And when an app

wants to work more closely with raw handwriting input—known as ink—those capabilities are present

as well.

The other topic we’ll cover in this chapter is sensors. It might seem an incongruous subject to place

alongside input until you come to see that sensors, like touch screens themselves, are another form of

input! Sensors tell an app what’s happening to the device in its relationship to the physical world: how

its positioned in space (relative to a number of reference points), how it’s moving, how it’s being held

relative to its “normal” orientation, and even how much light is shining on it. Thinking of sensors in this

light (pun intended), we begin to see opportunities for apps to directly integrate with the world around

a device rather than requiring users to tell the app about those relationships in some more abstract

way. And just to warn you, once you see just how easy it is to use the WinRT APIs for sensors, you

might be shopping for a new piece of well-equipped hardware!

Touch, Mouse, and Stylus Input

Where pointer-based input is concerned—which includes touch, mouse, and pen/stylus input—the

singular message from Microsoft has been (and remains), “Design for touch and get mouse and stylus

for free.” This is very much the case, as we shall see, but we’ve also found that a phrase like “touch-first

design” that sounds great to a consumer can be a terrifying proposition for developers! With all the

attention around touch, consumer expectations are often very demanding, and meeting such

expectations seems like it will take a lot of work.

Fortunately, Windows 8 provides a unified framework for handling pointer input—from all

sources—such that you don’t actually need to think about the differences until you truly need to. In

this way, touch-first design really is a design issue more than an implementation issue.

We’ll talk more about designing for touch in the next section. What I wanted to discuss first is how

you as a developer should approach implementing those designs once you have them so that you

don’t make any distinctions between the types of pointer input until it’s necessary:

 First, use templates and standard controls and you get lots of touch support for free,

along with mouse, pen, stylus, and keyboard support. If you build up your UI with

standard controls, set appropriate attributes for tab order (for keyboard users), and

handle standard DOM events like click, you’re pretty much covered. Controls like

semantic zoom already handle different kinds of input (as we saw in Chapter 5,

“Collections and Collection Controls”), and other CSS styles like snap points and content

347

zooming automatically handle various interaction gestures.

 Second, when you need to handle gestures directly, as with custom controls or other

elements with which the user will interact directly, use the gesture events like

MSGestureTap and MSGestureHold along with event sequences for inertial gestures

(MSGestureStart, MSGestureChange, MSGestureEnd). The benefit here is that gestures

are essentially higher-order interpretations of a series of lower-level pointer events,

meaning that you don’t have to do such interpretation yourself. For example, a pointer

down followed by a pointer up within a certain movement threshold (to account for

wiggling fingers) becomes a single tap gesture. A pointer down followed by a short

drag followed by a pointer up becomes a swipe that triggers a series of events, possibly

including inertial events (ones that continue to fire even after the pointer, like a touch

point, is physically released). Note that if you want to capture and save pointer input

directly without concern for gestures, there is also built-in support for inking, as we’ll

see later on.

 Third, if you need to handle pointer events directly, use the unified pointer events like

MSPointerDown, MSPointerMove, and so forth. These are lower-level events than

gestures, and they are primarily appropriate for apps that don’t necessarily need

gesture interpretation. For example, a drawing app simply needs to trace different

pointers with on-screen feedback, and concepts like swipe and inertial gestures aren’t

meaningful. Pointer events also provide more specialized device data such as pressure,

rotation, and tilt, which is surfaced through the pointer events. Still, it is possible to

implement gestures directly with pointer events, as a number of the built-in controls

do.

 Finally, an app can work directly with the gesture recognizer to provide its own

interpretations of pointer events into gestures.

So, what about legacy DOM events that we already know and love, beyond click? Can you still

work with the likes of mousedown, mouseup, mouseover, mousemove, mouseout, and mousewheel? The

answer is yes, because pointer events from all input sources will be automatically translated into these

legacy events. This can be useful when you’re porting code from a web app into a WinRT 8 app, for

example. This translation takes a little extra processing time, however, so for new code you’ll generally

realize better responsiveness by using the gesture and pointer events directly. Legacy mouse events

also assume a single pointer, so you won’t be able to distinguish multiple simultaneous touch

points—it’ll just look like the user is very rapidly clicking around the screen! As much as possible, use

the gesture and pointer events is your code.

The Touch Language, Its Translations, and Mouse/Keyboard

Equivalents
On the Windows Developer Center, the rather extensive article on Touch interaction design is helpful

348

http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx

for designers and developers alike. It discusses various ergonomic considerations, has some great

diagrams on the sizes of human fingers, provides clear guidance on the proper size for touch targets

given that human reality, and outlines key design principles such as providing direct feedback for

touch interaction (animation) and having content follow your finger.

Most importantly, the design guidance also describes the Windows 8 Touch Language, which

contains the eight core gestures that are baked into the system and the controls. The table below

shows and describes the gestures and indicates what events appear in the app for them.

Gesture Meaning and Gesture Events Description

One finger touches the screen and lifts up.

Tap for primary action (commanding);

appears as click and

MSGestureTap events on the

element.

Tapping on an element invokes its

primary action, typically executing

a command, checking a box,

setting a rating, positioning a

cursor, etc.

One finger touches the screen and stays in place.

Press and hold to learn; appears as

contextmenu and

MSGestureHold events on the

element.

This touch interaction causes

detailed information or teaching

visuals (for example, a tooltip or

context menu) to be displayed

without a commitment to an

action. Anything displayed this

way should not prevent users from

panning if they begin sliding their

finger.

One or more fingers touch the screen and move in

the same direction.

Slide to pan (can be horizontal or

vertical); appears as scrolling events

as well as a gesture series

(MSGestureStart,

MSGestureChange,

MSGestureEnd, possibly with

inertial gesture events, as well as

MSPointer* events).

Slide is used primarily for panning

interactions but can also be used

for moving, drawing, or writing.

Slide can also be used to target

small, densely packed elements by

scrubbing (sliding the finger over

related objects such as radio

buttons).

349

One or more fingers touch the screen and move a

short distance in the same direction.

Swipe to select, command, and move (can

be horizontal or vertical)—also called

cross-slide; appears as a gesture series

(MSGestureStart,

MSGestureChange, MSGestureEnd,

as well as MSPointer* events).

Sliding the finger a short

distance, perpendicular to

the panning direction, selects

objects in a list or grid; also

implies displaying commands

in an app bar relevant to the

selection.

Two or more fingers touch the screen and move

closer together or farther apart.

Pinch and stretch to zoom; appears as a

gesture series (MSGestureStart,

MSGestureChange,

MSGestureEnd), but apps can use the

-ms-content-zooming: zoom and

-ms-touch-action: pinch-zoom

CSS styles to enable touch zooming

automatically.

Can be used for optical zoom

or resizing, as well as for

semantic zoom where

applicable.

Two or more fingers touch the screen and move in a

clockwise or counter-clockwise arc.

Turn to rotate; appears as a gesture series

(MSGestureStart,

MSGestureChange,

MSGestureEnd).

Rotates an object or a view.

Swipe from top or bottom edge for app

commands; handled automatically through

the AppBar control, though an app can

also detect these events directly through

Windows.UI.Input.EdgeGesture.

The bottom app bar contains

app commands for the

current page context; the top

app bar provides for

navigation, if applicable.

Swipe from edge for system commands;

handled automatically by the system with

the app receiving specific events related to

the selected charm, when applicable.

Swiping from the right

displays the Charms bar;

swiping from the left cycles

through currently running

apps; swiping from the top

edge to the bottom closes

the current app; swiping

from the top edge to the left

or right snaps the current

app to one side of the

screen.

350

Additional details and guidelines for designing around this touch language can be found on the

Gestures, manipulations, and interactions topic.

You might notice in the table above that many of the gestures in the touch language don’t actually

have a single event associated with them (like pinch or rotate) but are instead represented by a series

of gesture or pointer events. The reason for this is that these gestures, when used with touch, typically

involve animation of the affected content while the gesture is happening. Swipes, for example, show

linear movement of the object being panned or selected. A pinch or stretch movement will often be

actively zooming the content. (Semantic Zoom is an exception, but then you just let the control handle

the details.) And a rotate gesture should definitely give visual feedback. In short, handling these

gestures with touch, in particular, means dealing with a series of events rather than just a single one, as

we shall see.

This is one reason that it’s so helpful (and time-saving!) to use the built-in controls as much as

possible, because they already handle all the gesture details for you. The ListView control, for example,

contains all the pointer/gesture logic to handling pans and swipes, along with taps. The Semantic

Zoom control, like I said, implements pinch and stretch by watching MSPointer* events. If you look at

the source code for these controls within WinJS, you’ll start to appreciate just how much they do for

you (and what it will look like to implement a rich custom control of your own, using the gesture

recognizer!).

On the theme of “write for touch and get other input for free” all of these gestures also have mouse

and keyboard equivalents, which the built-in controls also provide for you. It’s also helpful to know

what those equivalents are, as shown in the table below. The “Standard Keystrokes” section later in this

chapter also lists many other command-related keystrokes.

Touch Keyboard Mouse Pen/Stylus

Press and hold (or

tap on text selection)

Right-click button Right button click Press and hold

Tap Enter Left button click Tap

Slide (short distance) Arrow keys Left button click and drag, click on

scrollbar arrows, drag the scrollbar

thumb, use the mouse wheel

Tap on scrollbar arrows, drag scrollbar

thumb, tap and drag

Slide + inertia

(long distance)

Page Up/Page Down Left button click and drag, click on

scrollbar track, drag the scrollbar

thumb, use the mouse wheel

Tap on scrollbar track, drag scrollbar

thumb, tap and drag

Swipe to select Right-click button or spacebar Right button click Tap and drag

Pinch/Stretch Ctrl+ and Ctrl- Ctrl+mouse wheel or UI command UI command or other hardware

feature

Swipe from edge Win+Z, Win+Tab, Win+C or

Win+Shift+C

Clicking on corners of the screen;

right-click shows app bar

Drag in from edge

Rotate Ctrl+, and Ctrl+. Ctrl+Shift+mouse wheel UI command or other hardware

feature

You might notice a conspicuous absence of double-click and/or double-tap gestures in this list.

Does that surprise you? In early builds of Windows 8 we actually did have a double-tap gesture, but it

351

http://msdn.microsoft.com/en-us/library/windows/apps/hh761498.aspx

turned out to not be all that useful and sometimes very difficult for users to perform. I can say from

watching friends over the years that double-clicking with the mouse isn’t even all it’s cracked up to be.

People with not-entirely-stable hands will often move the mouse quite a ways between clicks, just as

they might move their finger between taps. As a result, the reliability of a double-tap ends up being

pretty low, and since it wasn’t really needed in the touch language, it was simply dropped altogether.

Sidebar: Creating Completely New Gestures?

While the Windows 8 touch language provides a simple yet fairly comprehensive set of gestures,

it’s not too hard to imagine other possibilities. The question is, when is it appropriate to

introduce a new kind of gesture or manipulation?

First, it makes sense that apps don’t generally introduce new ways to do the same things, such

as additional gestures that just swipe, zoom, etc. It’s better to simply get more creative in how

the app interprets an existing gesture. For example, a swipe gesture might pan a scrollable

region but can also just move an object on the screen—no need to invent a new gesture.

Second, if you have controls placed on the screen where you want the user to give input,

there’s no need to think in terms of gestures at all: just apply the input from those controls

appropriately.

Third, even when you do think a custom gesture is needed, the bottom-line recommendation

is to make those interactions feel natural, rather than something you just invent for the sake of

invention. We also recommend that gestures behave consistently with the number of pointers,

velocity/time, and so on. For example, separating an element into three pieces with a

three-finger stretch and into two pieces with a two-finger stretch is fine; having a three-finger

stretch enlarge an element while a two-finger stretch zooms the canvas is a bad idea, because it’s

not very discoverable. Similarly, the speed of a horizontal or vertical flick can affect the velocity

of an element’s movement, but having a fast flick switch to another page while a slow flick

highlights text is a bad idea. In this case, having different functions based on speed creates a

difficult UI for your customers because they’ll all have different ideas about what “fast” and

“slow” mean and might be limited by their physical abilities.

Finally, with any custom gesture, recognize that you are potentially introducing an

inconsistency between apps. When a user starts interacting with a certain kind of app in a new

way, he or she might start to expect that of other apps and might become confused (or upset)

when those apps don’t behave in the same way, especially if those apps use a similar gesture for

a completely different purpose! Complex gestures, too, as hinted above, might be difficult for

some, if not many, people to perform; might be limited by the kind of hardware in the device

(number of touch points, responsiveness, etc.); and are generally not very discoverable. In most

cases it’s probably far simpler to just add an appbar command on a button on your app canvas

to accomplish the same goal.

352

Edge Gestures

As we saw in Chapter 7, “Commanding UI,” you don’t need to do anything special for app commands

on the app bar or navigation bar to appear: Windows automatically handles the edge swipe from the

top and bottom of your app, along with right-click, Win+Z, and the context menu key on the

keyboard. That said, you can detect when these events happen directly by listening for the starting,

completed, and canceled events on the Windows.UI.Input.EdgeGesture object:

var edgeGesture = Windows.UI.Input.EdgeGesture.getForCurrentView();

edgeGesture.addEventListener("starting", onStarting);

edgeGesture.addEventListener("completed", onCompleted);

edgeGesture.addEventListener("canceled", onCanceled);

With these, completed fires for all input types; the starting and canceled events occur only for

touch. Within these events, the eventArgs.kind property contains a value from the EdgeGestureKind

enumeration that indicates the kind of input that invoked the event. The starting and canceled

events will always have the kind of touch, obviously, whereas completed can be any touch, keyboard,

or mouse:

function onCompleted(e) {

 // Determine whether it was touch or keyboard invocation

 if (e.kind === Windows.UI.Input.EdgeGestureKind.touch) {

 id("ScenarioOutput").innerText = "Invoked with touch.";

 }

 else if (e.kind === Windows.UI.Input.EdgeGestureKind.mouse) {

 id("ScenarioOutput").innerText = "Invoked with right-click.";

 }

 else if (e.kind === Windows.UI.Input.EdgeGestureKind.keyboard) {

 id("ScenarioOutput").innerText = "Invoked with keyboard.";

 }

}

The code above is taken from Scenario 1 of the Edge gesture invocation sample. In Scenario 2, the

sample also shows that you can prevent the edge gesture event from occurring for a particular element

if you handle the contextmenu event for that element and call eventArgs.preventDefault in your

handler. It does this for one element on the screen, such that right-clicking that element with the

mouse or pressing the context menu key when that element has the focus will prevent the edge

gesture events:

document.getElementById("handleContextMenuDiv").addEventListener("contextmenu", onContextMenu);

function onContextMenu(e) {

 e.preventDefault();

 id("ScenarioOutput").innerText =

 "The ContextMenu event was handled. The EdgeGesture event will not fire.";

}

Note that this method has no effect on edge gestures via touch and does not affect the Win+Z key

combination that normally invokes the app bar. It’s primarily to show that if you need to handle the

contextmenu event specifically, you usually want to prevent the edge gesture.

353

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.input.edgegesture.aspx
http://code.msdn.microsoft.com/windowsapps/Edge-gesture-invocation-76a474dd

CSS Styles That Affect Input

While we’re on the subject of input, it’s a good time to mention a number of CSS styles that affect the

input an app might receive.

One style is –ms-user-select, which we’ve encountered a few times already in Chapter 3, “App

Anatomy and Page Navigation,” and Chapter 4, “Controls, Control Styling, and Data Binding.” This style

can be set to one of the following:

 none disables direct selection, though the element as a whole can be selected if it’s

parent is selectable.

 inherit sets the selection behavior of an element to match its parent.

 text will enable selection for text even if the parent is set to none.

 element enables selection for an arbitrary element.

 auto (the default) may or may not enable selection depending on the control type and

the styling of the parent. For an element that is not a text control and does not have

contenteditable="true", it won’t be selectable unless it’s contained within a

selectable parent.

If you want to play around with the variations, refer to the Unselectable content areas with

-ms-user-select CSS attribute sample, which wins the prize for the longest sample name in the entire

Windows SDK!

A related style, but one not shown in the sample, is -ms-touch-select, which can be either none or

grippers, the latter being the style that enables the selection control circles for touch:

Selectable text elements automatically get this style, as do other textual elements with

contenteditable="true"—you can thus use -ms-touch-select to turn them off. To see the effect, try

this with some of the elements in scenario 1 of the aforementioned sample with the really long name!

In Chapter 6, “Layout,” we introduced the idea of snap points for panning, with the

-ms-scroll-snap* styles. Along these same lines, listed on the Touch: Zooming and Panning styles

reference, are others for content zooming, such as -ms-content-zooming and the -ms-content-zoom*

styles that provide snap points for zoom operations as well. The important thing is that

-ms-content-zooming: zoom (as opposed to the default, none) enables automatic zooming with touch

and the mouse wheel, provided that the element in question allows for overflow in both x and y

dimensions. There are quite a number of variations here for panning and zooming, and how those

gestures interact with WinJS controls. I’ll leave it to the Input: Pan/scroll and zoom sample to explain

the details.

354

http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://msdn.microsoft.com/en-us/library/windows/apps/hh453816.aspx
http://code.msdn.microsoft.com/windowsapps/Scrolling-panning-and-47d70d4c

Finally, the -ms-touch-action style provides for a number of options on an element:48

 none Disables touch on the element.

 auto Enables usual touch behaviors.

 pan-x/pan-y The element permits horizontal/vertical touch panning, which is

performed on the nearest ancestor that is horizontally/vertically scrollable, such as a

parent div.

 pinch-zoom Enables pinch-zoom on the element, performed on the nearest ancestor

that has -ms-content-zooming: zoom and overflow capability. For example, an img

element by itself won’t respond to the gesture with this style, but if you place it in a

parent div with overflow set, it will.

 manipulation Shorthand equivalent of pan-x pan-y pinch-zoom.

For an example of panning and zooming, try creating a simple app with markup like this (use

whatever image you’d like):

<div id="imageContainer">

</div>

and style the container as follows:

#imageContainer {

 overflow: auto;

 -ms-content-zooming:zoom;

 -ms-touch-action: manipulation;

}

What Input Capabilities Are Present?
The WinRT API in the Windows.Devices.Input namespace provides all the information you need

about the input capabilities that are available on the current device, specifically through these three

objects:

 MouseCapabilities Properties are mousePresent (0 or 1), horizontalWheelPresent

(0 or 1), verticalWheelPresent (0 or 1), numberOfButtons (a number), and

swapButtons (0 or 1).

 KeyboardCapabilities Contains only a single property: keyboardPresent (0 or 1).

Note that this does not indicate the presence of the on-screen keyboard, which is

always available; keyboardPresent specifically indicates a physical keyboard device.

 TouchCapabilities Properties are touchPresent (0 or 1) and contacts (a number).

48 double-tap-zoom is not supported for WinRT apps.

355

http://msdn.microsoft.com/en-us/library/windows/apps/br225648.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.input.mousecapabilities.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.input.keyboardcapabilities.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.input.touchcapabilities.aspx

To check whether touch is available, then, you can use a bit of code like this:

var tc = new Windows.Devices.Input.TouchCapabilities();

var touchPoints = 0;

if (tc.touchPresent) {

 touchPoints = tc.contacts;

}

You’ll notice that the capabilities above don’t say anything about a stylus or pen. For these and for

more extensive information about all pointer devices, including touch and mouse, we have the

Windows.Devices.Input.PointerDevice.getPointerDevices method. This returns an array of

PointerDevice objects, each of which has these properties:

 pointerDeviceType A value from Windows.Devices.Input.PointerDeviceType that

can be touch, pen, or mouse.

 maxContacts The maximum number of contact points that the device can

support—typically 1 for mouse and stylus and any other number for touch.

 isIntegrated true indicates that the device is built into the machine so that its

presence can be depended upon; false indicates a peripheral that the user could

disconnect.

 physicalDeviceRect This Windows.Foundation.Rect object provides the bounding

rectangle as the device sees itself. Oftentimes, a touch screen’s input resolution won’t

actually match the screen pixels, meaning that the input device isn’t capable of hitting

one and only one pixel. On one of my touch-capable laptops, for example, this

resolution is reported as 968x548 for a 1366x768 pixel screen (as reported in

screenRect below). A mouse, on the other hand, typically does match screen pixels

one-for-one. Where this could be important for a drawing app that works with a stylus,

where an input resolution smaller than the screen would mean there will be some

inaccuracy when translating input coordinates to screen pixels.

 screenRect This Windows.Foundation.Rect object provides the bounding rectangle

for the device on the screen, which is to say, the minimum and maximum coordinates

that you should encounter with events from the device. This rectangle will take

multimonitor systems into account, and it’s adjusted for resolution scaling.

 supportedUsages An array of Windows.Devices.Input.PointerDeviceUsage

structures that supply what’s called HID (human interface device) usage information.

This subject is far beyond the scope of this book, so I’ll refer you to the HID Usages

page on MSDN for starters.

The Input Device capabilities sample in the Windows SDK retrieves this information and displays it

to the screen through the code in pointer.js. I won’t show that code here because it’s just a matter of

iterating through the array and building a big HTML string to dump into the DOM. In the simulator,

356

http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.input.pointerdevice.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.input.pointerdevicetype.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.input.pointerdeviceusage.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff539946(v=vs.85).aspx
http://code.msdn.microsoft.com/windowsapps/Input-device-capabilities-31b67745
http://code.msdn.microsoft.com/windowsapps/Input-device-capabilities-31b67745

the output appears as follows—notice that the simulator reports the presence of touch and mouse

both in this case.

Curious Forge? Interestingly, I ran this same sample in Visual Studio’s Local Machine debugger on a

laptop that is definitely not touch-enabled, and yet a touch device was still reported as in the image

above! Why was that? It’s because I still had the Visual Studio simulator running, which adds a virtual

touch device to the hardware profile. After closing the simulator completely (not just minimizing it), I

got an accurate report for my laptop’s capabilities. So be mindful of this if you’re writing code to test

for specific capabilities.

Tried remote debugging yet? Speaking of debugging, as mentioned in a sidebar in Chapter 6,

“Layout,” testing an app against different device capabilities is a great opportunity to use remote

debugging in Visual Studio. If you haven’t done so already, it takes only a few minutes to set up and

makes it far easier to test apps on multiple machines. For details, again see on Running Windows 8

apps on a remote machine.

Unified Pointer Events
For any situation where you want to directly work with touch, mouse, and stylus input, perhaps to

implement parts of the touch language in this way, you use the MSPointer* events. Most art/drawing

apps, for example, will use these events to track and respond to screen interaction. Remember again

that pointers are a lower-level way of looking at input than gestures, which we’ll see in the next

section. Which input model you use depends on the kind of events you’re really looking to work with.

Tip Pointer events won’t fire if the system is trying to do a manipulation like panning or zooming. To

disable manipulations on an element, set the -ms-content-zooming: none and avoid using

-ms-touch-action styles of pan-x, pan-y, pinch-zoom, and manipulation.

As with other events, you can listen to MSPointer* events on whatever elements are relevant to you

(remembering again that these are translated into legacy mouse events, so you should not listen to

both). The specific events are described as follows, given in the order of their typical sequencing:

 MSPointerOver Pointer moved into the bounds of the element from outside.

357

http://msdn.microsoft.com/en-us/library/windows/apps/hh441469(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441469(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465907.aspx

 MSPointerHover A pointer is hovering over the element.

 MSPointerDown Pointer down occurred on the element.

 MSPointerMove Pointer moved across the element.

 MSPointerUp Pointer was released over the element. (If an element previously

captured the touch, it should call its msReleasePointerCapture method.) Note that if a

pointer is moved outside of an element and released, it will receive MSPointerOut but

not MSPointerUp.

 MSPointerCancel The system canceled a pointer event.

 MSPointerOut Pointer moved out of the bounds of the element, which also occurs

with an up event. This is the last pointer event an element will receive.

 MSGotPointerCapture The pointer is captured by the element.

 MSLostPointerCapture The pointer capture has been lost for the element.

These are the names you use with addEventListener; the equivalent property names are of the

form onmspointerdown, as usual. It should be obvious that some of these events might not occur with

all pointer types—touch screens, for instance, generally don’t provide over and hover events, though

some that can detect the proximity of a finger are so capable.

The PointerEvents example provided with this chapter’s companion content and shown in Figure

9-1 lets you see what’s going on with all the mouse, pointer, and gesture events, selectively turning

groups of events on and off. (Actually the events are always firing; the checkboxes simply control what

is shown in the display.)

358

http://msdn.microsoft.com/en-us/library/windows/apps/hh465895.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465891.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465899.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465912.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868516.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465904.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465875.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465883.aspx

FIGURE 9-1 The PointerEvents example display.

Within the handlers for all of the MSPointer* events, the eventArgs object contains a whole roster

of properties. One of them, pointerType, identifies the type of input: touch (2), pen (3), and mouse (4).

This property lets you implement different behaviors for different input methods, if desired. For inputs

that support more than one simultaneous pointer (as with multitouch), each event object also contains

a unique pointerId value that identifies a stroke or a path for a specific contact point, allowing you to

correlate an initial MSPointerDown event with subsequent events. When we look at gestures in the next

section, we’ll also see how we use the pointerId of MSPointerDown to associate a gesture with a

pointer.

The complete roster of properties that come with the event is actually far too much to show here, as

it contains many of the usual DOM properties along with many pointer-related ones from an object

type called MSPointerEvent. The best way to see what shows up is to run some code like the Input

DOM pointer and gesture event handling sample (a canvas drawing app), set a breakpoint within a

handler for one of the events, and examine the event object. Here are some of the more relevant

properties to our discussion here:

Properties Description

currentPoint A Windows.UI.Input.PointerPoint object. This contains many other properties such as pointerDevice (a

Windows.Input.Device.PointerDevice object, as described in “What Input Capabilities Are Present” earlier in this

chapter) and one just called properties, which is a Windows.UI.Input.PointerPointProperties.

pointerType The source of the event could be touch or pen or mouse: MSPOINTER_TYPE_TOUCH (2), MSPOINTER_TYPE_PEN (3),

and MSPOINTER_TYPE_MOUSE (4). You can use this to make adjustments according to input type, if necessary.

pointerId The unique identifier of the contact. This remains the same throughout the lifetime of the pointer.

type The name of the event, as in "MSPointerDown".

x/screenX, y/screenY The x- and y-coordinates of the pointer’s center point position relative to the screen.

clientX, clientY The x- and y-coordinates of the pointer’s center point position relative to the client area of the app.

offsetX, offsetY The x- and y-coordinates of the pointer’s center point position relative to the element.

button Determines the button pressed by the user (on mice and other input devices with buttons). The left is 0, middle is 1,

and right is 2; these values can be combined with bitwise the OR operator for chord presses (multiple buttons).

ctrlKey, altKey,
shiftKey

Indicates whether certain keys were depressed when the pointer event occurred.

hwTimestamp The timestamp (in milliseconds) at which the event was received from the hardware.

relatedTarget Provides the element related to the current event, e.g., the MSPointerOut event will provide the element to which the

touch is moving. This can be null.

isPrimary Indicates if this pointer is the primary one in a multitouch scenario (such as the pointer that the mouse would

control).

Properties surfaced depending on hardware support (if not supported, these values will be 0)

width, height The contact width and height of the touch point specified by pointerId.

pressure Pen pressure normalized in a range of 0 to 255.

rotation Clockwise rotation of the cursor around its own major axis in a range of 0 to 359.

tiltX The left-right tilt away from the normal of a transducer (typically perpendicular to the surface) in a range of -90

(left) to 90 (right).

tiltY The forward-back tilt away from the normal of a transducer (typically perpendicular to the surface) in a range of -90

(forward/away from user) to 90 (back/toward user).

It’s very instructive to run the Input DOM pointer and gesture event handling sample on a

359

http://msdn.microsoft.com/en-us/library/windows/apps/hh831236.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441233.aspx
http://code.msdn.microsoft.com/windowsapps/Input-DOM-pointer-and-2e5697ed
http://code.msdn.microsoft.com/windowsapps/Input-DOM-pointer-and-2e5697ed
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.input.pointerpoint.aspx

multitouch device, because it tracks each pointerId separately allowing you to draw with multiple

fingers simultaneously.

Tip If for some reason you want to prevent the translation of an MSPointer* event into a legacy

mouse event, call the eventArgs.preventDefault method within the appropriate event handler.

Pointer Capture

It’s common with down and up events for an element to set and release a capture on the pointer. To

support these operations, the following methods are available on each element in the DOM and apply

to each pointerId separately:

Method Description

msSetPointerCapture Captures the pointerId for the element so that pointer events come to it and are not

raised for other elements (even if you move outside the first element and into another).

MSGotPointerCapture will be fired on the element as well.

msReleasePointerCapture Ends capture, triggering an MSLostPointerCapture event.

msGetPointerCapture Returns the element with the capture, if any (otherwise null).

We see this in the Input DOM pointer and gesture event handling sample, where it sets capture

within its MSPointerDown handler and releases it in MSPointerUp:

this.MSPointerDown = function (evt) {

 canvas.msSetPointerCapture(evt.pointerId);

 // ...

};

this.MSPointerUp = function (evt) {

 canvas.msReleasePointerCapture(evt.pointerId);

 // ...

};

Gesture Events
The first thing to know about all MSGesture* events is that they don’t just fire automatically like click

and MSPointer* events, and you don’t just add a listener and be done with it (that’s what click is for!).

Instead, you need to do a little bit of configuration first to tell the system how exactly you want

gestures to occur, and you need to use MSPointerDown to associate the gesture configurations with a

particular pointerId. This small added bit of complexity makes it possible for apps to work with

multiple concurrent gestures and keep them all independent just as you can do with pointer events.

Imagine, for example, a jigsaw puzzle app (as presented in a small way in one of the samples in“The

Gesture Samples” below) that allows multiple people sitting around a table-size touch screen to work

with individual pieces as they will. Using gestures, each person can be manipulating an individual piece

(or two!), moving it around, rotating it, perhaps zooming in to see a larger view, and, of course, testing

360

out placement. For WinRT apps written in JavaScript, it’s also helpful that manipulation deltas for

configured elements—which include translation, rotation, and scaling—are given in the coordinate

space of the parent element, meaning that it’s fairly straightforward to translate the manipulation into

CSS transforms and such to make the manipulation visible. In short, there is a great deal of flexibility

here when you need it; if you don’t, you can use gestures in a simple manner as well. Let’s see how it all

works.

The first step to receiving gesture events is to create an MSGesture object and associate it with the

element for which you’re interested in receiving events. In the PointerEvents example, that element is

named divElement; you need to store that element in the gesture’s target property and store the

gesture object in the element’s gestureObject property for use by MSPointerDown:

var gestureObject = new MSGesture();

gestureObject.target = divElement;

divElement.gestureObject = gestureObject;

With this association, you can then just add event listeners as usual. The example shows the full

roster of the six gesture events:49

divElement.addEventListener("MSGestureTap", gestureTap);

divElement.addEventListener("MSGestureHold", gestureHold);

divElement.addEventListener("MSGestureStart", gestureStart);

divElement.addEventListener("MSGestureChange", gestureChange);

divElement.addEventListener("MSGestureEnd", gestureEnd);

divElement.addEventListener("MSInertiaStart", inertiaStart);

We’re not quite done yet, however. If this is all you do in your code, you still won’t receive any of

the events because each gesture has to be associated with a pointer. You do this within the

MSPointerDown event handler:

function pointerDown(e) {

 //Associate this pointer with the target's gesture

 e.target.gestureObject.addPointer(e.pointerId);

 e.target.gestureObject.pointerType = e.pointerType;

}

If you want to enable rotation and pinch-stretch gestures with the mouse wheel (which you should

do), simply add an event handler for the wheel event, set the pointerId for that event to 1 (a fixed

value for the mouse wheel), and send it on to your MSPointerDown handler:

divElement.addEventListener("wheel", function (e) {

 e.pointerId = 1; // Fixed pointerId for MouseWheel

 pointerDown(e);

});

Now gesture events from both touch and mouse will start to come in for that element. (Remember

49 In earlier preview releases there were also events named MSGestureInit and MSGestureDoubleTap that have since been

removed.

361

http://msdn.microsoft.com/en-us/library/windows/apps/hh968035.aspx

that mouse wheel by itself is translate, Ctrl+wheel is zoom, and Shift+Ctrl+wheel is rotate.) What’s

more, if additional MSPointerDown events occur for the same element with different pointerId values,

the addPointer method will include that new pointer in the gesture. This automatically enables

pinch-stretch and rotation gestures that rely on multiple points.

If you run the PointerEvents example (checking Ignore Mouse Events and Ignore Pointer Events)

and start doing taps, tap-holds, and short drags (with touch or mouse), you’ll see output like that

shown in Figure 9-2.

FIGURE 9-2 The PointerEvents example output for gesture events (screen shot cropped a bit to emphasize detail).

Again, gesture events are fired in response to a series of pointer events, offering higher-level

interpretations of the lower-level pointer events. It’s in process of interpretation that differentiates the

tap/hold events from the start/change/end events, how and when the MSInertiaStart event kicks off,

and what the gesture recognizer does when the MSGesture object is given multiple points.

Starting with a single pointer gesture, the first aspect of differentiation is a pointer movement

threshold. When the gesture recognizer sees an MSPointerDown event, it starts to watch the

MSPointerMove events to see whether they stay inside that threshold, which is the effectively boundary

for tap and hold events. This accounts for and effectively ignores small amounts of jiggle in a mouse or

a touch point as illustrated (or shall I say, exaggerated!) below, where a pointer down, a little

movement, and a pointer up generates an MSGestureTap:

362

What then differentiates MSGestureTap and MSGestureHold is a time threshold:

 MSGestureTap occurs when MSPointerDown is followed by MSPointerUp within the time

threshold.

 MSGestureHold occurs when MSPointerDown is followed by MSPointerUp outside the

time threshold. MSGestureHold then fires once when the time threshold is passed with

eventArgs.detail set to 1 (MSGESTURE_FLAG_BEGIN). Provided that the pointer is still

within the movement threshold, MSGestureHold fires then again when MSPointerUp

occurs, with eventArgs.detail set to 2 (MSGESTURE_FLAG_END). You can see this

detail included in the first two events of Figure 9-2 above.

The gesture flags in eventArgs.detail value is accompanied by many other positional and

movement properties in the eventArgs object as shown in the following table:

Properties Description

screenX, screenY The x- and y-coordinates of the gesture center point relative to the screen.

clientX, clientY The x- and y-coordinates of the gesture center point relative to the client area of the app.

offsetX, offsetY The x- and y-coordinates of the gesture center point relative to the element.

translationX,
translationY

Translation along the x- and y-axes.

velocityX, velocityY Velocity of movement along x- and y-axes.

scale Scale factor for zoom (percentage change in the scale).

expansion Diameter of the manipulation area (absolute change in size, in pixels).

velocityExpansion Velocity of expanding manipulation area.

rotation Rotation angle in radians.

velocityAngular Angular velocity in radians.

detail Contains the gesture flags that describe the gesture state of the event; these flags are defined as values

in eventArgs itself:

eventArgs.MSGESTURE_FLAG_NONE (0): Indicates ongoing gesture such as MSGestureChange where there is

change in the coordinates.

eventArgs.MSGESTURE_FLAG_BEGIN (1): The beginning of the gesture sequence. If the interaction contains

single event such as MSGestureTap, both MSGESTURE_FLAG_BEGIN and MSGESTURE_FLAG_END flags will be set

(detail will be 3).

eventArgs.MSGESTURE_FLAG_END (2): The end of the gesture sequence. Again, if the interaction contains

363

single event such as MSGestureTap, both MSGESTURE_FLAG_BEGIN and MSGESTURE_FLAG_END flags will be set

(detail will be 3).

eventArgs.MSGESTURE_FLAG_CANCEL (4): The gesture was cancelled. Always comes in pair with

MSGESTURE_FLAG_END, (detail will be 6).

eventArgs.MSGESTURE_FLAG_INERTIA (8): The gesture is in an inertia state. The MSGestureChange event can

be distinguished from direct interaction and timer driven inertia through this flag.

hwTimestamp The timestamp of the pointer assigned by the system when the input was received from the hardware.

Many of these properties become much more interesting when a pointer moves outside the

movement threshold, after which time you’ll no longer see the tap or hold events. Instead, as soon as

the pointer leaves the threshold area, MSGestureStart is fired, followed by zero or more

MSGestureChange events (typically many more!), and completed with a single MSGestureEnd event:

Note that if a pointer has been held within the movement threshold long enough for the first

MSGestureHold to fire with MSGESTURE_FLAG_BEGIN, but then the pointer is moved out of the threshold

area, MSGestureHold will be fired a second time with MSGESTURE_FLAG_CANCEL | MSGESTURE_FLAG_END

in eventArgs.detail (a value of 6), followed by MSGestureStart with MSGESTURE_FLAG_BEGIN. This

series is how you differentiate a hold from a slide or drag gesture even if the user holds the item in

place for a while.

Together, the MSGestureStart, MSGestureChange, and MSGestureEnd events define a manipulation

of the element to which the gesture is attached, where the pointer remains in contact with the element

throughout the manipulation. Technically this means that the pointer was no longer moving when it

was released.

If the pointer was moving when released, then we switch from a manipulation to an inertial motion.

In this case, an MSInertiaStart event gets fired in to indicate that the pointer effectively continues to

move even though contact was released or lifted. That is, you’ll continue to receive MSGestureChange

events until the movement is complete:

364

Conceptually you can see the difference between a manipulation and an inertial motion as

illustrated in Figure 9-3; the curves shown here are not necessarily representative of actual changes

between messages. If the pointer is moved along the green line such that it’s no longer moving when

released, we see the series of gesture that define a manipulation. If the pointer is released while

moving, we see MSInertiaStart in the midst of MSGestureChange events and the event sequence

follows the orange line.

FIGURE 9-3 A conceptual representation of manipulation (green) and inertial (orange) motions.

Referring back to Figure 9-2, when the Show drop-down list (as shown!) is set to Velocity, the

output for MSGestureChange events includes the eventArgs.velocity* values. During a manipulation,

the velocity can change at any rate depending on how the pointer is moving. Once an inertial motion

begins, however, the velocity will gradually diminish down to zero at which point MSGestureEnd occurs.

The number of change events depends on how long it takes for the movement to slow down and

come to a stop, of course, but if you’re just moving an element on the display with these change

events, the user will see a nice fluid animation. You can play with this in the PointerEvents example,

365

using the Show drop-down list to also look at how the other positional properties are affected by

different manipulations and inertial gestures.

Multipoint Gestures

What we’ve discussed so far has focused on a single point gesture, but the same is also true for

multipoint gestures. When an MSGesture object is given multiple pointers through its addPointer

event, it will also fire MSGestureStart, MSGestureChange, MSGestureEnd for rotations and

pinch-stretch gestures, along with MSInertiaStart. In these cases, the scale, rotation,

velocityAngular, expansion, and velocityExpansion properties in the eventArgs object become

meaningful.

You can selectively view these properties for MSGestureChange events through the upper-right

drop-down list in the PointerEvents example. One thing you might notice is that if you do multipoint

gestures in the Visual Studio simulator, you’ll never see MSGestureTap events for the individual points.

This is because the gesture recognizer can see that multiple MSPointerDown events are happening

almost simultaneously (which is where the hwTimestamp property comes into play) and combines them

into an MSGestureStart right away (for example, starting a pinch-stretch or rotation gesture).

Now I’m sure you’re asking some important questions. While I’ve been speaking of pinch-stretch,

rotation, and translation gestures as different things, how does one, in fact, differentiate these gestures

when they’re all coming into the app through the same MSGestureChange event? Doesn’t that just

make everything confusing? What’s the strategy for translation, rotation, and scaling gestures?

Well, the answer is—you don’t have to separate them! If you think about it for a moment, how you

handle MSGestureChange events and the data each one contains depends on the kinds of

manipulations you actually support in your UI:

 If you’re supporting only translation of an element, you’ll simply never pay any

attention to properties like scale and rotation and apply only those like clientX and

clientY. This would be the expected behavior for selecting an item in a collection

control, for example (or a control that allowed drag-and-drop of items to rearrange

them).

 If you support only zooming, you’ll ignore all the positional properties and work with

scale, expansion, and/or velocityExpansion. This would be the sort of behavior

you’d expect for a control that supported optical or semantic zoom.

 If you’re interested in only rotation, the rotation and velocityAngular properties are

your friends.

Of course, if you want to support multiple kinds of manipulations together, you can simply apply all

of these properties together, feeding them into CSS transforms, for instance. This would be expected of

an app that allowed arbitrary manipulation of on-screen objects, and it’s exactly what the one of the

gesture samples of the Windows SDK demonstrates.

366

The Input Instantiable Gesture Sample

While the PointerEvents example included with this chapter gives us a raw view of pointer and gesture

events, what really matters to apps is how to apply these events to real manipulation of on-screen

objects, which is to say, implementing parts of touch language such as pinch/stretch and rotation. For

these we can turn to the Input Instantiable gestures sample.

This sample primarily demonstrates how to use gesture events on multiple elements simultaneously.

In Scenarios 1 and 2, the app simulates a simple example of a puzzle app, as mentioned earlier. Each

colored box can be manipulated separately, using drag to move (with or without inertia), pinch-stretch

gestures to zoom, and rotation gestures to rotate, as shown in Figure 9-4.

FIGURE 9-4 The Input Instantiable Gestures Sample after playing around a bit. The “instantiable” word comes from

the need to instantiate an MSGesture object to receive gesture events.

In Scenario 1 (js/instantiableGesture.js), an MSGesture object is created for each screen element

along with one for the black background “table top” element during initialization (the initialize

function). This is the same as we’ve already seen. Similarly, the MSPointerDown handler

(onPointerDown) adds pointers to the gesture object for each element, adding a little more processing

to manage z-index and to add only pointers of the same type to an element. This avoids having

simultaneous touch, mouse and stylus pointers working on the same element (which would be odd!):

function onPointerDown(e) {

 if (e.target.gesture.pointerType === null) { // First contact

 e.target.gesture.addPointer(e.pointerId); // Attaches pointer to element

 e.target.gesture.pointerType = e.pointerType;

 e.target.freeCapture = 1;

 }

 else if (e.target.gesture.pointerType === e.pointerType) { // Contacts of similar type

 e.target.gesture.addPointer(e.pointerId); // Attaches pointer to element

367

http://code.msdn.microsoft.com/windowsapps/Input-Instantiable-deda69ca
http://code.msdn.microsoft.com/windowsapps/Input-Instantiable-deda69ca
http://code.msdn.microsoft.com/windowsapps/Input-Instantiable-deda69ca
http://code.msdn.microsoft.com/windowsapps/Input-Instantiable-deda69ca

 }

 // Create a different gesture object if we get a different point type

 else if (e.target.freeCapture === 0) {

 var gObj = new MSGesture();

 gObj.target = e.target;

 gObj.srcElt = e.target;

 e.target.gesture = gObj;

 e.target.gesture.pointerType = e.pointerType;

 e.target.gesture.addPointer(e.pointerId);

 e.target.freeCapture = 1;

 }

 // ZIndex Changes on pointer down. Element on which pointer comes down becomes topmost

 var zOrderCurr = e.target.style.zIndex;

 var elts = document.getElementsByClassName("GestureElement");

 for (var i = 0; i < elts.length; i++) {

 if (elts[i].style.zIndex === 3) {

 elts[i].style.zIndex = zOrderCurr;

 }

 e.target.style.zIndex = 3;

 }

}

The MSGestureChange handler for each individual piece (onGestureChange) then just takes all the

translation, rotation, and scaling data in the eventArgs object and applies them with CSS. This shows

how convenient it is that all those properties are already reported in the coordinate space that we

need:

function onGestureChange(e) {

 var elt = e.target;

 var m = new MSCSSMatrix(elt.style.msTransform);

 elt.style.msTransform = m.

 translate(e.offsetX, e.offsetY).

 translate(e.translationX, e.translationY).

 rotate(e.rotation * 180 / Math.PI).

 scale(e.scale).

 translate(-e.offsetX, -e.offsetY);

}

There’s a little more going on in the sample, but what we’ve shown here are the important parts.

Clearly, if you didn’t want to support certain kinds of manipulations, you’d again simply ignore certain

properties in the event args object.

Scenario 2 of this sample has the same output but is implemented a little differently. As you can see

in its initialize function (js/gesture.js), the only events that are initially registered are for the entire

“table top” that contains the black background and a surrounding border. Gesture objects for the

individual pieces are created and attached to a pointer within the MSPointerDown event

(onTableTopPointerDown). This approach is much more efficient and scalable to a puzzle app that has

hundreds or even thousands of pieces, as gesture objects are held only for as long as a particular piece

is being manipulated. Those manipulations are also like those of scenario 1, where all the

368

MSGestureChange properties are applied through a CSS transform. For further details, refer to the code

comments in gesture.js, as they are quite extensive.

Scenario 3 of this sample provides another demonstration of performing translate, pinch-stretch,

and rotate gestures using the mouse wheel. As shown in the PointerEvents example, the only thing you

need to do here is process the wheel event, set eventArgs.pointerId to 1, and pass that onto your

MSPointerDown handler that then adds the pointer to the gesture object:

elt.addEventListener("wheel", onMouseWheel, false);

function onMouseWheel(e) {

 e.pointerId = 1; // Fixed pointerId for MouseWheel

 onPointerDown(e);

}

Again, that’s all there is to it. (I love it when it’s so simple!) As an exercise, you might try adding this

little bit of code to Scenarios 1 and 2 as well.

The Gesture Recognizer
With inertial gestures, which continue to send some number of MSGestureChange events after pointers

are released, you might be asking this question: What, exactly, controls those events? That is, there is

obviously a specific deceleration model built into those events, namely the one around which the

Windows look and feel is built. But what if you want a different behavior? And what if you want to

interpret pointer events in different way altogether?

The agent that interprets pointer events into gesture events is called the gesture recognizer, which

you can get to directly through the Windows.UI.Input.GestureRecognizer object. After instantiating

this object with new, you then set its gestureSettings properties for the kinds of manipulations and

gestures you’re interested in. The documentation for Windows.UI.Input.GestureSettings gives all

the options here, which include tap, doubleTap, hold, holdWithMouse, rightTap, drag, translations,

rotations, scaling, inertia motions, and crossSlide (swipe). For example, in the Input manipulations

and gestures sample (ballineight.js) we can see how it configures a recognizer for tap, rotate, translate,

and scale (with inertia):

gr = new Windows.UI.Input.GestureRecognizer();

// Configuring GestureRecognizer to detect manipulation rotation, translation, scaling,

// + inertia for those three components of manipulation + the tap gesture

gr.gestureSettings =

 Windows.UI.Input.GestureSettings.manipulationRotate |

 Windows.UI.Input.GestureSettings.manipulationTranslateX |

 Windows.UI.Input.GestureSettings.manipulationTranslateY |

 Windows.UI.Input.GestureSettings.manipulationScale |

 Windows.UI.Input.GestureSettings.manipulationRotateInertia |

 Windows.UI.Input.GestureSettings.manipulationScaleInertia |

 Windows.UI.Input.GestureSettings.manipulationTranslateInertia |

 Windows.UI.Input.GestureSettings.tap;

369

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.input.gesturerecognizer.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.input.gesturerecognizer.gesturesettings.aspx
http://code.msdn.microsoft.com/windowsapps/Manipulations-and-gestures-26918bb3
http://code.msdn.microsoft.com/windowsapps/Manipulations-and-gestures-26918bb3

// Turn off UI feedback for gestures (we'll still see UI feedback for PointerPoints)

gr.showGestureFeedback = false;

The GestureRecognizer also has a number of properties to configure those specific events. With

cross-slides, for example, you can set the crossSlideThresholds, crossSlideExact, and

crossSlideHorizontally properties. You can set the deceleration rates (in pixels/ms2) through

inertiaExpansionDeceleration, inertiaRotationDeceleration, and

inertiaTranslationDeceleration.

Once configured, you then start passing MSPointer* events to the recognizer object, specific to its

methods named processDownEvent, processMoveEvents, and processUpEvent (also

processMouseWheelEvent, and processInertia, if needed). In response, depending on the

configuration, the recognizer will then fire a number of its own events. First, there are discrete events

like crossSliding, dragging, holding, rightTapped, and tapped. For all others it will fire a series of

manipuationStarted, manipulationUpdated, manipulationInertiaStarting, and

manipulationCompleted.

When you’re using the recognizer directly, in other words, you’ll be listening for MSPointer* events,

feeding them to the recognizer, and then listening for and acting on the recognizer’s specific events as

above rather than the MSGesture* events that come out of the default recognizer that is configured by

the MSGesture object.

Again, refer to the documentation on Windows.UI.Input.GestureRecognizer for all the details

and to the sample for some bits of code. As one extra example, here’s a snippet to capture a small

horizontal motion using the manipuationTranslateX setting:

var recognizer = new Windows.UI.Input.GestureRecognizer();

recognizer.gestureSettings = Windows.UI.Input.GestureSettings.manipulationTranslateX;

var pp = Windows.UI.Input.PointerPoint;

var DELTA = 10;

myElement.addEventListener('MSPointerDown', function (data) {

 recognizer.processDownEvent(pp.getCurrentPoint(data.pointerId));

});

myElement.addEventListener('MSPointerUp', function (data) {

 recognizer.processUpEvent(pp.getCurrentPoint(data.pointerId));

});

myElement.addEventListener('MSPointerMove', function (data) {

 recognizer.processMoveEvents(pp.getIntermediatePoints(data.pointerId));

});

recognizer.addEventListener('manipulationcompleted', function (args) {

 var pt = args.cumulative.translation;

 if (pt.x < -DELTA) {

 // move right

 }

 else if (pt.x > DELTA) {

 // move left

 }

});

370

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.input.gesturerecognizer.aspx

Beyond the recognizer, do note that you can always go the low-level route and do your own

processing of MSPointer* events however you want, completely bypassing the gesture recognizer. This

would be necessary if the configurations allowed by the recognizer object don’t accommodate your

specific need. At the same time, now is a good time to re-read “Sidebar: Creating Completely New

Gesture?” at the end of the earlier section on the touch language. It addresses a few of the questions

about when and if custom gestures are really needed.

Keyboard Input and the Soft Keyboard

After everything to do with touch and other forms of input, it seems almost anticlimactic to consider

the humble keyboard. Yet of course the keyboard remains utterly important for textual input, whether

it’s a physical keyboard or the on-screen “soft” keyboard. It is especially important for accessibility as

well, as some users are physically unable to use a mouse or other devices.

Fortunately, there is nothing special about handling input from either keyboard in a WinRT app:

simply process keydown, keyup, and keypress events as you already know how to do. This works for

both the physical keyboard as well as the soft keyboard.

Case closed? Well, not entirely. There are two special concerns with the soft keyboard: how to make

it appear, and the effect of its appearance on app layout. At the end of this section I’ll also provide a

quick run-down of standard keystrokes for app commands.

Soft Keyboard Appearance and Configuration
The appearance of the soft keyboard happens for one reason and one reason only: the user touches a

text input element or an element with the contenteditable="true" attribute (such as a div or

canvas). There isn’t an API to make the keyboard appear, nor will it appear when you click in such an

element with the mouse or a stylus or tab to it with a physical keyboard.

The configuration of the keyboard is also sensitive to the type of input control. We can see this

through Scenario 2 of the Input Touch keyboard text input sample, where ScopedViews.html contains a

bunch of input controls (surrounding table markup omitted), which appear as shown in Figure 9-5:

<input type="url" name="url" id="url" size="50" />

<input type="email" name="email" id="email" size="50" />

<input type="password" name="password" id="password" size="50" />

<input type="text" name="text" id="text" size="50" />

<input type="number" name="number" id="number" />

<input type="search" name="search" id="search" size="50" />

<input type="tel" name="tel" id="tel" size="50" />

371

http://code.msdn.microsoft.com/windowsapps/Input-Touch-keyboard-text-f86e9bd9

FIGURE 9-5 The soft keyboard appears when you touch an input field, as shown in the Input Touch keyboard text

input sample.

What’s shown in Figure 9-5 is the default keyboard. If you tap in the Search field, you get pretty

much the same view except the Enter key turns into Search. For the Email field, it’s much like the

default view except you get @ and .com keys to either side of the spacebar:

The URL keyboard is the same except the @ key is dropped and Enter turns into Go:

For passwords you get a key to hide keypresses, which prevents a visible animation from happening

on the screen—a very important feature if you’re recording videos!

372

And finally, the Number and Telephone fields bring up a number-oriented view:

In all of these cases, the key on the lower right (whose icon looks a bit like a keyboard), lets you

switch to other keyboard layouts:

The options here are the normal (wide) keyboard, the split keyboard, a handwriting recognition

panel, and a key to dismiss the soft keyboard entirely. Here’s what the default split keyboard and

handwriting panels look like:

This handwriting panel for input is simply another mode of the soft keyboard: you can switch

between the two, and your selection sticks across invocations. (For this reason, Windows does not

automatically invoke the handwriting panel for a pen pointer, because the user may prefer to use the

soft keyboard even with the stylus.)

The keyboard will also adjust its appearance with text input controls to provide text suggestions;

specifically, a highlighted Insert key appears. This is demonstrated in Scenario 1 of the sample and

shown below:

373

Adjusting Layout for the Soft Keyboard
The second concern with the soft keyboard (no, I didn’t forget!) is handling layout when it appears

because the input field might be positioned such that it would become obscured.

When the soft keyboard or handwriting panel appears, the system will try to make sure the input

field is visible by scrolling the page content if it can. This means that it just sets a negative vertical

offset to your entire page equal to the height of the soft keyboard. For example, if I add (as a total

hack!) a bunch of
 elements at the top of ScopedView.html in the sample such that the input

controls are at the bottom of the page, and then I touch one of them, the whole page is slid up, as

shown in Figure 9-6.

FIGURE 9-6 When the soft keyboard appears, Windows will automatically slide the app page up to make sure the

input field isn’t obscured.

Although this can be the easiest solution to this particular concern, it’s not always ideal. Fortunately,

you can do something more intelligent if you’d like by listening to the hiding and showing events of

the Windows.UI.ViewManagement.InputPane object and adjust your layout directly. Code for doing

this can be found in the—are you ready for this one?—Responding to the appearance of the on-screen

374

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.viewmanagement.inputpane.aspx
http://code.msdn.microsoft.com/windowsapps/Keyboard-Events-Sample-866ba41c

keyboard sample.50 Adding listeners for these events is simple (see the bottom of js/keyboardPage.js):

var inputPane = Windows.UI.ViewManagement.InputPane.getForCurrentView();

inputPane.addEventListener("showing", showingHandler, false);

inputPane.addEventListener("hiding", hidingHandler, false);

Within the showing event handler, the eventArgs.occludedRect object (a

Windows.Foundation.Rect) gives you the coordinates and dimensions of the area that the soft

keyboard is covering. In response, you can adjust whatever layout properties are applicable and set the

eventArgs.ensuredFocusedElementInView property to true. This tells Windows to bypass its

automatic offset behavior:

function showingHandler(e) {

 if (document.activeElement.id === "customHandling") {

 keyboardShowing(e.occludedRect);

 // Be careful with this property. Once it has been set, the framework will

 // do nothing to help you keep the focused element in view.

 e.ensuredFocusedElementInView = true;

 }

}

The sample will show both cases. If you tap on the aqua-colored defaultHandling element on the

bottom left of the app, as shown in Figure 9-7, this showingHandler does nothing, so the default

behavior occurs.

FIGURE 9-7 Tapping on the left defaultHanding element at the bottom shows the default behavior when the

keyboard appears, which offsets other page content vertically.

If you tap the customHandling element (on the right), it calls its keyboardShowing routine to do

layout adjustment:

function keyboardShowing(keyboardRect) {

 // Some code omitted...

50 And while you might think this is the second longest sample name in the Windows SDK, it actually gets only the bronze

medal. The Unselectable content areas with -ms-user-select CSS attribute sample, as we’ve seen, gets the gold by seven characters.

Using requestAnimationFrame for power efficient animations sample wins the silver by 4. I don’t mind such long names,

however—I’m delighted that there we have such an extensive set of great samples to draw from!

375

http://code.msdn.microsoft.com/windowsapps/Keyboard-Events-Sample-866ba41c
http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://code.msdn.microsoft.com/windowsapps/Using-requestAnimationFrame-924b039a

 var elementToAnimate = document.getElementById("middleContainer");

 var elementToResize = document.getElementById("appView");

 var elementToScroll = document.getElementById("middleList");

 // Cache the amount things are moved by. It makes the math easier

 displacement = keyboardRect.height;

 var displacementString = -displacement + "px";

 // Figure out what the last visible things in the list are

 var bottomOfList = elementToScroll.scrollTop + elementToScroll.clientHeight;

 // Animate

 showingAnimation = KeyboardEventsSample.Animations.inputPaneShowing(elementToAnimate,

 { top: displacementString, left: "0px" }).then(function () {

 // After animation, layout in a smaller viewport above the keyboard

 elementToResize.style.height = keyboardRect.y + "px";

 // Scroll the list into the right spot so that the list does not appear to scroll

 elementToScroll.scrollTop = bottomOfList - elementToScroll.clientHeight;

 showingAnimation = null;

 });

}

The code here is a little involved because it’s animating the movement of the various page

elements. The short of it is that the layout of affected elements—namely the one that is tapped—is

adjusted to make space for the keyboard. Other elements on the page are otherwise unaffected. The

result is shown in Figure 9-8.

FIGURE 9-8 Tapping the left gray customHanding element shows custom handling for the keyboard’s appearance.

Standard Keystrokes
The last piece I wanted to include on the subject of the keyboard is a list of command keystrokes you

376

might support in your app, which are shown in the following table. These are in addition to the touch

language equivalents, and you’re probably accustomed to using many of them already. They’re good

to review because again, apps should be fully usable with just the keyboard, and implementing

keystrokes like these goes a long way toward fulfilling that requirement and enabling more efficient

use of your app by keyboard users.

Action or Command Keystroke

Move focus Tab

Back (navigation) Back button on special keyboards; backspace if not in a text field; Alt+left

arrow

Forward (navigation Alt+right arrow

Up Alt+up arrow

Cancel/Escape from mode ESC

Walk through items in a list Arrow keys (plus Tab)

Jump through items in a list to next group if

selection doesn’t automatically follow focus

Ctrl+arrow keys

Zoom (semantic and optical) Ctrl+ and Ctrl-

Jump to something in a named collection Start typing

Jump far Page up/down (should work in panning UI, in either horizontal or vertical

directions)

Next tab or group Ctrl+Tab

Previous tab or group Ctrl+Shift+Tab

Nth tab or group Ctrl+N (1-9)

Open app bar Win+Z

Context menu Context menu key

Open additional flyout/select menu item Enter

Navigate into/activate Enter (on a selection)

Select Space

Select contiguous Shift+arrow keys

Pin this Ctrl+Shift+!

Save Ctrl+S

Find Ctrl+F

Print Ctrl+P (call Windows.Graphics.Printing.PrintManager.showPrintUIAsync)

Copy Ctrl+C

Cut Ctrl+X

Paste Ctrl+V

New Item Ctrl+N

Open address Ctrl+L or Alt+D

Rotate Ctrl+, and Ctrl+.

Play/Pause Ctrl+P (media apps only)

Next item Ctrl+F (conflict with Find)

Previous item Ctrl+B

Rewind Ctrl+Shift+B

Fast forward Ctrl+Shift+F

Inking

Beyond the built-in soft keyboard/handwriting pane, an app might also want to provide a surface on

which it can directly accept pointer input as ink. By this I mean more than just having a canvas element

and processing MSPointer* events to draw on it to produce a raster bitmap. Ink is a data structure that

377

maintains the actual input data (including pressure, angle, and velocity if the hardware supports it)

which allows for handwriting recognition and other higher-level processing that isn’t possible with

raster data. Ink, in other words, remembers how an image was drawn, not just the final image itself,

and it works with all types of pointer input.

Ink support in WinRT is found in the Windows.UI.Input.Inking namespace. This API doesn’t

depend on any particular presentation framework, nor does it provide for rendering: it deals only with

the managing data structures that an app can then render itself to a drawing surface such as a canvas.

Here’s its basic function:

 Create an instance of the manager object with new

Windows.UI.Input.Inking.InkManager.

 Assign any drawing attributes by creating a

Windows.UI.Input.Inking.InkDrawingAttributes object and settings attributes like

the ink color, fitToCurve (as opposed to the default straight lines), ignorePressure,

penTip (Windows.UI.Input.Inking.PenTipShape.circle or rectangle), and size (a

Windows.Foundation.Size object with height and width).

 For the input element, listen for the MSPointerDown, MSPointerMove, and MSPointerUp

events, which you generally need to handle for display purposes already. The

eventArgs.currentPoint is a Windows.UI.Input.PointerPoint object that contains a

pointer id, point coordinates, and properties like pressure, tilt, and twist.

 Pass that PointerPoint object to the ink manager’s processPointerDown,

processPointerUpdate, and processPointerUp methods, respectively.

 After processPointerUp, the ink manager will create a

Windows.UI.Input.Inking.InkStroke object for that path. Those strokes can then be

obtained through the ink manager’s getStrokes method and rendered as desired.

 Higher-order gestures can be also converted into InkStroke objects directly and given

to the manager through its addStroke method. Stroke objects can also be deleted with

deleteStroke.

The ink manager also provides methods for performing handwriting recognition with its contained

strokes, saving and loading the data, and handling different modes like draw and erase. For a complete

demonstration, check out the Input Ink sample that is shown in Figure 9-9. This sample lets you see the

full extent of inking capabilities, including handwriting recognition.

378

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.input.inking.aspx
http://code.msdn.microsoft.com/windowsapps/Ink-App-sample-61abaec3

FIGURE 9-9 The Input Ink sample with many commands on its app bar. The green “Hello” was generated by

selecting the Hello ink and tapping the Recognition command.

The SDK also includes the Input Simplified ink sample to demonstrate a more focused handwriting

recognition scenario, as shown in Figure 9-10. You should know that this is one sample that doesn’t

support touch at all—it’s strictly mouse and stylus and uses keystrokes for various commands instead

of an app bar. Look at the keydown function in simpleink.js for a list of the Ctrl+key commands; the

spacebar performs recognition of your strokes and the backspace key clears the canvas. As you can see

in the figure, I think the handwriting recognition is quite good! (It tells me that the handwriting

samples I gave to an engineering team at Microsoft somewhere in the mid-1990s must have made a

valuable contribution.)

FIGURE 9-10 The Input Simplified Ink sample doing a great job recognizing my sloppy mouse-based handwriting.

379

http://code.msdn.microsoft.com/windowsapps/Input-simplified-ink-sample-11614bbf

Geolocation

Before we explore sensors more generally, I wanted to call out the geolocation capabilities for WinRT

apps separately because its API is structured differently from the rest. Indeed, because we’ve already

used this since Chapter 2, “Quickstart” in the Here My Am! App, what we really want to do here is

provide the complete story of this highly useful capability.

Unlike all other sensors, in fact, geolocation is the only one that has an associated capability you

must declare in the manifest. Where you are on the earth is an absolute measure, if you will, and is

therefore classified as a piece of personal information. Therefore, users must give their consent before

an app can obtain that information, and your app must also provide a Privacy Statement in the

Windows Store. Other sensor data, in contrast, is relative—you cannot, for example, really know

anything about a person from how a device is tilted, how it’s moving, or how much light is shining on

it. Accordingly, none of those others sensors have a capability you must declare like geolocation: you

can use them freely.

As you might know, geolocation can be obtained in two different ways. The primary and most

precise way, of course, is to get a reading from an actual GPS radio that is talking to geosynchronous

satellites some hundreds of miles up in orbit. The other reasonably useful means, though not always

accurate, is to attempt to find one’s position through the IP address of a wired network connection or

to triangulate from the position of available WiFi hotspots. Whatever the case, WinRT will do its best to

give you the best reading it can.

To access geolocation readings, you must first create an instance of the WinRT geolocator, through

new Windows.Devices.Geolocation.Geolocator. With that in hand, you can then call its

getGeopositionAsync method, whose results (delivered to your completed handler) is a Geoposition

object (in the same Windows.Devices.Geolocation, as everything here is unless noted). Here’s the

code as it appears in Here My Am!:

var gl = new Windows.Devices.Geolocation.Geolocator();

gl.getGeopositionAsync().done(function (position) {

 //Save for share

 lastPosition = { latitude: position.coordinate.latitude,

 longitude: position.coordinate.longitude };

The getGeopositionAsync method also has a variation where you can specify two parameters: a

maximum age for a cached reading (which is to say, how stale you can allow a reading to be) and a

timeout value for how long you’re willing to wait for a response. Both values are in milliseconds.

A Geoposition contains two properties. First, its coordinate property is a Geocoodinate object that

provides accuracy (meters), altitude (meters), altitudeAccuracy (meters), heading (degrees relative

to true north), latitude (degrees), longitude (degrees), speed (meters/sec), and a timestamp (Date).

The second part of a Geoposition is a CivicAddress object named—what else!—civicAddress, which

might contain city (string), country (string, a two-letter ISO-3166 country code), postalCode (string),

380

http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.geolocation.geolocator.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh973537.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.geolocation.geoposition.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.geolocation.geocoordinate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.geolocation.civicaddress.aspx

state (string), and timestamp (Date) properties, if the geolocation provider supplies such data.51

You can indicate the accuracy you’re looking for through the Geolocator’s desiredAccuracy

property, which is either PositionAccuracy.default or PositionAccuracy.high. The latter, mind

you, will be much more radio or network intensive. This might incur higher costs on metered

broadband connections and can shorten battery life, so set this to high only if it’s essential to your user

experience.

The Geolocator also provides a locationStatus property, which is a PositionStatus object

containing ready, initializing, noData, disabled, notInitialized, and notAvailable. It should be

obvious that you can’t get data from a Geolocator that’s in any state other than ready. To track this,

you can listen to the Geolocator’s statusChanged event, where eventArgs.status property in your

handler will contain a PositionStatus; this is helpful when you find that a GPS device might take a

couple seconds to provide a reading. For an example of using this event, see Scenario 1 of the

Geolocation sample in the Windows SDK:

geolocator = new Windows.Devices.Geolocation.Geolocator();

geolocator.addEventListener("statuschanged", onStatusChanged);

function onStatusChanged(e) {

 switch (e.status) {

 // …

 }

}

Note that PositionStatus and statusChanged reflect the readiness of the GPS device, and that

readiness is not affected by the Location permission in an app’s the Settings pane. As demonstrated in

Here My Am!, an app needs to check permissions by trying to obtain a setting, which is a different

concern from device readiness.

The other two interesting properties of the Geolocator are movementThreshold, a distance in meters

that the device can move before another reading is triggered (which can be used for geo-fencing

scenarios), and reportInterval, which is the number of milliseconds between attempted readings. Be

conservative with the latter, setting it to what you really need, because you again want to minimize

network or radio activity. In any case, when the Geolocator takes and other reading and finds that the

device has moved beyond the movementThreshold, it will fire a positionChanged event, where the

eventArgs.position property is a new Geoposition object. This is also shown in Scenario 1 of the

Geolocation sample:

geolocator.addEventListener("positionchanged", onPositionChanged);

function onPositionChanged(e) {

 var coord = e.position.coordinate;

51 That is, the civicAddress property might not be available or might be empty. An alternate means to obtain it is to use

the Bing Maps API to convert coordinates into an address.

381

http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.geolocation.positionstatus.aspx
http://code.msdn.microsoft.com/windowsapps/Geolocation-2483de66
http://www.microsoft.com/maps/developers/web.aspx

 document.getElementById("latitude").innerHTML = coord.latitude;

 document.getElementById("longitude").innerHTML = coord.longitude;

 document.getElementById("accuracy").innerHTML = coord.accuracy;

}

With movementThreadhold and reportInterval, really think through what your app needs based

on the accuracy and/or refresh intervals of the data you’re using in relation to the location. For

example, weather data is regional and might be updated only hourly. Therefore, movementThreshold

might be set on the scale of miles or kilometers and reportInterval at 15, 30, 60 minutes, or longer.

A mapping or real-time traffic app, on the other hand, works with data that is very location-sensitive

and will thus have a much smaller threshold and a much shorter interval.

Where battery life is concerned, it’s best to simply take a reading when the user wants one, rather

than following the position at regular intervals. But this again depends on the app scenario, and you

could also provide a setting that lets the user control geolocation activity.

It’s also very important to note that apps won’t get positionChanged or statusChanged events

while suspended unless you register a time trigger background task for this purpose and the user adds

the app to the lock screen. We’ll talk more of this in Chapter 13, “Tiles, Notifications, the Lock Screen,

and Background Tasks,” and you can also see how this works in Scenario 3 of the Geolocation sample.

If, however, you don’t use a background task or the user doesn’t place you on the lock screen and you

still want to track the user’s position, be sure to handle the resuming event and refresh the position

there.

On the flip side, some geolocation scenarios, such as providing navigation, need to also keep the

display active (preventing automatic screen shutoff) even when there’s no user activity. For this

purpose you can use the Windows.System.Display.DisplayRequest class, namely its requestActive

and releaseRelease methods that you would call when starting and ending a navigation session. Of

course, since keeping the display active consumes more battery power, only use this capability when

necessary—as when specifically providing navigation—and avoid simply making the request when your

app starts. Otherwise your app will probably gain a reputation in the Windows Store as being power

hungry!

Sidebar: HTML5 Geolocation

An experienced HTML/JavaScript developer might wonder why WinRT provides a Geolocation

API when HTML5 already has one: window.navigator.geolocation and its

getCurrentPosition method that returns an object with coordinates. The reason for the overlap

is that other languages like C#, Visual Basic, and C++ don’t have another API to draw from,

which leaves HTML/JavaScript developers a choice. Under the covers, the HTML5 API hooks into

the same data as the WinRT API, requires the same manifest capability, and is subject to the

same user consent, so for the most part the two APIs are almost equivalent. I would give WinRT a

slight edge due to the movementThreshold option, which helps an app cooperate with power

management and enables easier geo-fencing. Doing the same with the HTML5 API would

require more frequent polling and battery consumption. For many scenarios, however, you can

382

http://msdn.microsoft.com/en-us/library/windows/apps/windows.system.display.displayrequest.aspx

use either one with equal results.

Like all other WinRT APIs, however, Windows.Devices.Geolocation is available only in local

context pages in a WinRT app; within web context pages you can use the HTML5 API.

Sensors

As I wrote in the introduction to this chapter, I like to think of sensors as another form of input. It

actually makes a lot of sense because every device that is now wholly integrated into our computer

systems—such that we take them for granted—was at one point a kind of human-interface peripheral.

In time, I suspect that many of the sensors that are new to us today will be standard equipment just

about everywhere.

Sensors, again, are a way of understanding the relationship of a device to the physical world around

it, and this constitutes input because you, as a human being, can affect that relationship primarily by

moving the device around in physical space or otherwise changing its environment. Sensors can also

be used as direct input to cause motion on the screen rather than relying on some form of abstract

input like the keyboard or mouse. For example, instead of using keystrokes to abstractly tilt a game

board, you can, with sensors, just tilt the device. Shaking, in fact, is becoming a well-known physical

gesture that can be wired to a command of some kind like Retry Now, darn you! Why aren’t you doing

what I want? Haven’t we for years been shaking or smacking our computers when they aren’t behaving

properly? Well, with sensors the computer can now actually respond!

Here, then, is what the various sensors tell us:

 Location The device’s position on the earth (as we covered in the previous section).

 Compass and orientation The direction the device is pointing, relative to the earth’s

magnetic piles or relative to the device’s inherent sense of position (both simple and

complex orientation).

 Inclinometer The static pitch, roll, and yaw of the device in 3D space.

 Gyrometer The angular velocity/rotational motion of the device in 3D space.

 Accelerometer The linear G-force acceleration of the device within 3D space (x, y, z).

 Ambient light The amount of light surrounding the device.

These are the sensors that are represented in the WinRT API,52 some of which are created in

52 There is also the proximity sensor for near-field communications (NFC) that tells us when devices are near one another or

make contact, but this is more a networking handshake than a sensor like the others. We’ll see this in Chapter 14,

“Networking.”

383

software through sensor fusion. This means taking raw data from one or more hardware sensors and

combining, interpreting, and presenting it all in a form that’s more directly useful to apps. Just as with

pointers, you can still get to raw data if you want it, but oftentimes it’s unnecessary. For example, the

Simple Orientation sensor provides a simple interpretation of how the device is oriented in relation to

its default position, rounding everything off, as it were, to the nearest 90-degree quadrant. The full

Orientation sensor, on the other hand, combines gyrometer, accelerometer, and compass data to

provide an exact 3D orientation matrix that is much more precise but much more oriented (if I might

make the pun!) to advanced scenarios than simply needing to know whether the device is

upside-down or rightside-up.

Because all of these sensors are very similar in how they work (which is intentional, with the

exception of the Simple Orientation sensor, which is intentionally dissimilar!), I want to show the

general pattern of the sensor APIs rather than explicit examples for each. Such examples are readily

available in these SDK samples: Accelerometer, Compass, Gyrometer, Inclinometer, Light Sensor, and

OrientationSensor

The usage pattern is as follows, with the particulars summarized in the table that follows:

 Obtain a sensor object via Windows.Devices.Sensors.<sensor>.getDefault().

 Call that object’s getCurrentReading to obtain a one-time reading.

 For ongoing readings, configure the object’s minimumReportInterval and

reportInterval properties (both in milliseconds) and listen to the object’s

readingchanged event. Your handler will receive a reading object of an appropriate

type in response. As with geolocation, setting these values wisely will help optimize

battery life by avoiding excess electrons flying through the sensors!

Sensor Name

(Windows.Devices.Sensors.)

Added Members Reading Type

(Windows.Devices.Sensors)

Reading Properties (timestamp is a Date; all

others are Numbers unless noted)

Accelerometer Event: shaken (event args

contains only a timestamp

property)

AccelerometerReading accelerationX (G’s), accelerationY,

accelerationZ, timestamp

Compass n/a CompassReading headingMagneticNorth (degrees),

headingTrueNorth, timestamp

Gyrometer n/a GyrometerReading angularVelocityX (degrees/sec),

angularVelocityY, angularVelocityZ,

timestamp

Inclinometer n/a InclinometerReading pitchDegrees (degrees), rollDegrees

(degrees), yawDegrees (degrees), timestamp

LightSensor n/a LightSensorReading illuminenceInLux (lux), timestamp

OrientationSensor n/a OrientationSensorReading quaternion, (SensorQuaternion

containing w, x, y, and z properties)

rotationMatrix

(SensorRotationMatrix containing m11,

m12, m13, m21, m22, m23, m31, m32, m33

properties), timestamp

384

http://code.msdn.microsoft.com/windowsapps/Accelerometer-Sensor-Sample-22982671
http://code.msdn.microsoft.com/windowsapps/Compass-Sensor-Sample-0ed09c55
http://code.msdn.microsoft.com/windowsapps/Gyrometer-Sensor-Sample-4fe891d9
http://code.msdn.microsoft.com/windowsapps/Inclinometer-Sensor-Sample-0cd0bf84
http://code.msdn.microsoft.com/windowsapps/LightSensor-Sample-4477824c
http://code.msdn.microsoft.com/windowsapps/OrientationSensor-sample-0b1732be
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.accelerometer.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.accelerometerreading.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.compass.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.compassreading.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.gyrometer.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.gyrometerreading.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.inclinometer.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.inclinometerreading.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.lightsensor.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.lightsensorreading.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.orientationsensor.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.orientationsensorreading.aspx

Here’s an example of such code from the Gyrometer sample (js/scenario1.js):

gyrometer = Windows.Devices.Sensors.Gyrometer.getDefault();

var minimumReportInterval = gyrometer.minimumReportInterval;

var reportInterval = minimumReportInterval > 16 ? minimumReportInterval : 16;

gyrometer.reportInterval = reportInterval;

gyrometer.addEventListener("readingchanged", onDataChanged);

function onDataChanged(e) {

 var reading = e.reading;

 document.getElementById("eventOutputX").innerHTML = reading.angularVelocityX.toFixed(2);

 document.getElementById("eventOutputY").innerHTML = reading.angularVelocityY.toFixed(2);

 document.getElementById("eventOutputZ").innerHTML = reading.angularVelocityZ.toFixed(2);

}

With the Orientation Sensor, a quaternion can be most easily understood as a rotation of a point

[x,y,z] about a single arbitrary axis. This is different from a rotation matrix, which represents rotations

around three axes. The mathematics behind quaternions is fairly exotic because it involves the

geometric properties of complex numbers and mathematical properties of imaginary numbers, but

working with them is simple and frameworks like DirectX support them. See the OrientationSensor

sample for more.

Speaking of orientation, I’d mentioned that the SimpleOrientationSensor works a little differently.

Its purpose is to supply quadrant orientation rather than exact orientation, which is perhaps all you

need. For example, a star chart app would need to know if a slate device is upside-down so that it can

adjust its display (along with a compass reading) to match the sky itself.

To summarize this sensor’s usage:

 Call Windows.Devices.Sensors.SimpleOrientation.getDefault to obtain the object.

 Call the getCurrentOrientation to obtain a reading.

 The orientationChanged event provides for ongoing readings, where eventArgs

contains orientation (a reading) and timestamp properties.

 The reading is a SimpleOrientation object that contains these properties:

o notRotated (“portrait up”), rotated90DegreesCounterclockwise (“portrait left”),

rotated90DegreesCounterclockwise (“portrait down”),

rotated270DegreesCounterclockwise (“landscape right”) Note that these are entirely

different from view states like fullscreen-landscape and fullscreen-portrait.

o faceup, facedown (slate devices only).

For a demonstration, see the SimpleOrientationSensor sample.

385

http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.simpleorientationsensor.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.simpleorientation.aspx
http://code.msdn.microsoft.com/windowsapps/SimpleOrientationSensor-d948ac62

What We’ve Just Learned

 “Design for touch, get mouse and stylus for free” is a message that holds true, because

working with pointer and gesture input from a variety of input devices doesn’t require

you to differentiate between the forms of input.

 Using built-in controls is the easiest way to handle input, but you can also handle

MSPointer* events and MSGesture* events directly, when needed. You can also feed

MSPointer* events into a custom gesture recognizer (that issues its own events).

 The Windows 8 touch language includes tap, press and hold, slide/pan, cross-slide (to

select), pinch-stretch, rotate, and edge gestures (from top/bottom and from the sides).

A tap is typically handled with a click event, whereas the others require the creation of

an MSGesture object, association of that object with a pointer, and handling of

MSGesture* event sequences which provide for maniplations and inertial motions

together.

 The touch language also has mouse, stylus, and keyboard equivalents. For mouse and

stylus, there is very little work an app needs to do (such as sending mouse wheel events

to the gesture object). Keyboard support must be implemented separately, but simply

uses the standard HTML/JavaScript events.

 Keyboard support also includes accommodating the soft (on-screen) keyboard, which

appears automatically for text input fields and other content-editable elements. It

automatically adjusts its appearance according to input type, and will pan the app

contents up if necessary to avoid having the keyboard overlap the input control. An

app can also handle visibility events directly to provide a better experience than the

default.

 The Inking API provides apps with the means to record, save, and render an entire

series of pointer activities, where the strokes can also be fed into a handwriting

recognizer.

 The Geolocation API in WinRT, similar to the HTML5 geolocation API, provides apps

with access to GPS data as well as events when the device has moved past a specified

threshold.

 The WinRT API represents a number of sensors that can also be used as input to an app.

In addition to geolocation, the sensors are compass, orientation, simple orientation

(quadrant-based), inclinometer, gyrometer, accelerometer, and ambient light.

 Most sensors follow the same usage pattern: acquire the sensor object, get a current

reading, and possibly listen to the readingchanged event. They are very easy to work

with, leaving much of your energy to apply them creatively!

386

Chapter 10

Media

To say that media is important to apps—and to culture in general—is a gross understatement. Ever

since the likes of Edison made it possible to record a performance for later enjoyment, and the likes of

Marconi made it possible to widely broadcast and distribute such performances, humanity’s worldwide

appetite for media—graphics, audio, and video—has probably outpaced the appetite for automobiles,

electricity, and even junk food. In the early days of the Internet, graphics and images easily accounted

for the bulk of network traffic. Today, streaming video even from a single source like Netflix holds top

honors for pushing the capabilities of our broadband infrastructure! (It certainly holds true in my own

household with my young son’s love of Curious George and Bob the Builder.)

Incorporating some form of media is likely a central concern for most WinRT apps. Simple ones,

even, probably use at least a few graphics to brand the app and present an attractive UI, as we’ve

already seen on a number of occasions. Many others, especially games, will certainly use graphics,

video, and audio together. In the context of this book, all of this means using the img, svg (Scalable

Vector Graphics), canvas, audio, and video elements of HTML5.

Of course, working with media goes well beyond just presentation because apps might also provide

any of the following capabilities:

 Organize and edit media files, including those in the pictures, music, and videos media

libraries.

 Transcode (convert) media files, possibly applying various filters and custom codecs.

 Organize and edit playlists.

 Capture audio and video from system devices.

 Stream media from a server to a device, or from a device to a PlayTo target, perhaps

also applying DRM.

These capabilities, for which many WinRT APIs exist, along with the media elements of HTML5 and

their particular capabilities within the Windows 8 environment, will be our focus for this chapter.

Note As is relevant to this chapter, a complete list of audio and video formats that are supported for

WinRT apps can be found on Supported audio and video formats.

Sidebar: Performance Tricks for Faster Apps

Some of the recommendations in this chapter come from a great talk by Jason Weber, the

Performance Lead for Internet Explorer, called 50 Performance Tricks to Make Your Windows 8

387

http://msdn.microsoft.com/en-us/library/windows/apps/hh986969.aspx
http://go.microsoft.com/fwlink/?LinkID=261988

Apps Using HTML5 Faster. While some of these tricks are specifically for web applications

running in a browser, many of them are wholly applicable to WinRT apps written in JavaScript as

they run on top of the same infrastructure as Internet Explorer.

Creating Media Elements

Certainly the easiest means to incorporate media into an app is what we’ve already been doing for

years: simply use the appropriate HTML element in your layout and voila! there you have it. With img,

audio, and video elements, in fact, you’re completely free to use content from just about any location.

That is, the src attributes of these elements can be assigned URLs that point to in-package content

(using relative paths or paths based on

Windows.ApplicationModel.Package.current.installedLocation that you then pass to

URL.createObjectURL), files in your app data folders (using ms-appx:// URLs or paths based on

Windows.Storage.ApplicationData.current again using URL.createObjectURL) , and remote files

with http:// and other URLs. With the img element, this includes using SVG files as the source.

There are three ways to create a media element in a page or page control.

First is to include the element directly in declarative HTML. Here it’s often useful to use the

preload="auto" attribute for remote audio and video to increase the responsiveness of controls and

other UI that depend on those elements. (Doing so isn’t really important for local media files since they

are, well, already local!) Oftentimes, media elements are placed near the top of the HTML file, in order

of priority, so that downloading can begin while the rest of the document is being parsed.

On the flip side, if the user can wait a short time to start a video, use a preview image in place of the

video and don’t start the download until it’s actually necessary. Code for this is shown later in this

chapter in the “Video Playback and Deferred Loading” section.

Playback for a declarative element can be automatically started with the autoplay attribute, though

the built-in UI if the element has the controls attribute, or by calling <element>.play() from

JavaScript.

The second method is to create an HTML element in JavaScript via document.createElement and

add it to the DOM with <parent>.appendChild and similar methods. Here’s an example (using media

files that are included with this chapter’s companion content, though you’ll need to drop the code into

a new project of your own):

//Create elements and add to DOM, which will trigger layout

var picture = document.createElement("img");

picture.src = "media/wildflowers.jpg";

picture.width = 300;

picture.height = 450;

document.getElementById("divShow").appendChild(picture);

var movie = document.createElement("video");

388

http://go.microsoft.com/fwlink/?LinkID=261988

movie.src = "media/ModelRocket1.mp4";

movie.autoplay = false;

movie.controls = true;

document.getElementById("divShow").appendChild(movie);

var sound = document.createElement("audio");

sound.src = "media/SpringyBoing.mp3";

sound.autoplay = true; //Play as soon as element is added to DOM

sound.controls = true; //If false, audio plays but does not affect layout

document.getElementById("divShow").appendChild(sound);

Unless otherwise hidden by styles, image and video elements, plus audio elements with the

controls attribute, will trigger re-rendering of the document layout. An audio element without that

attribute will not cause re-rendering.

As with declarative HTML, setting autoplay to true will cause video and audio to start playing as

soon as the element is added to the DOM.

Finally, for audio, apps can also create an Audio object in JavaScript to play sounds or music without

any effect on UI. More on this later. JavaScript also has object classes for Image, and the Audio class can

be used to load video:

//Create objects (pre-loading), then set other DOM object sources accordingly

var picture = new Image(300, 450);

picture.src = "http://www.kraigbrockschmidt.com/downloads/media/wildflowers.jpg";

document.getElementById("image1").src = picture.src;

//Audio object can be used to pre-load (but not render) video

var movie = new Audio("http://www.kraigbrockschmidt.com/downloads/media/ModelRocket1.mp4");

document.getElementById("video1").src = movie.src;

var sound = new Audio("http://www.kraigbrockschmidt.com/downloads/media/SpringyBoing.mp3");

document.getElementById("audio1").src = sound.src;

Creating an Image or Audio object from code does not create elements in the DOM, which can be a

useful trait. The Image object, for instance, has been used for years to preload an array of image

sources for use with things like image rotators and popup menus. Preloading in this case only means

that the images have been downloaded and cached. This way, assigning the same URL to the src

attribute of an element that is in the DOM, as shown above, will have that image appear immediately.

The same is true for preloading video and audio, but again, this is primarily helpful with remote media

as files on the local file system will load relatively quickly as-is. Still, if you have large local images and

want them to appear quickly when needed, preloading them into memory is a useful strategy.

Of course, you might want to load media only when it’s needed, in which case the same type of

code can be used with existing elements, or you can just create an element and add it to the DOM as

shown earlier.

389

Graphics Elements: Img, Svg, and Canvas (and a Little CSS)

I know you’re probably excited to get to sections of this chapter on video and audio, but we cannot

forget that images have been the backbone of web applications since the beginning and remain a

huge part of any app’s user experience. Indeed, it’s helpful to remember that video itself is

conceptually just a series of static images sequenced over time! Fortunately, HTML5 has greatly

expanded an app’s ability to incorporate image data by adding SVG support and the canvas element

to the tried-and-true img element. Furthermore, applying CSS animations and transitions (covered in

detail in Chapter 11, “Purposeful Animations”) to otherwise static image elements can make them

appear very dynamic.

Speaking of CSS, it’s worth noting that many graphical effects that once required the use of static

images can be achieved with just CSS, especially CSS3:

 Borders, background colors, and background images

 Folder tabs, menus, and toolbars

 Rounded border corners, multiple backgrounds/borders, and image borders

 Transparency

 Embeddable fonts

 Box shadows

 Text shadows

 Gradients

In short, if you’ve ever used img elements to create small visual effects, create gradient

backgrounds, use a nonstandard font, or provide some kind of graphical navigation structure, there’s

probably a way to do it in CSS. For details, see the great overview of CSS3 by Smashing Magazine as

well as the CSS specs at http://w3c.org. CSS also provides the ability to declaratively handle some

events and state using pseudo-selectors of hover, visited, active, focus, target, enabled, disabled,

and checked. For more, see http://css-tricks.com/ as well as another Smashing Magazine tutorial on

pseudo-classes.

That said, let’s review the three primary HTML5 elements for graphics:

 img is used for raster data. The PNG format generally preferred over other formats,

especially for text and line art. GIF is generally considered outdated, as the primary

scenarios where GIF produced a smaller file size can probably be achieved with CSS

directly. Where scaling is concerned, WinRT apps need to consider resolution scaling, as

we saw in Chapter 6, “Layout,” and provide separate image files for each scale the app

might encounter.

390

http://coding.smashingmagazine.com/2009/01/08/push-your-web-design-into-the-future-with-css3/
http://w3c.org/
http://css-tricks.com/
http://www.smashingmagazine.com/2011/03/30/how-to-use-css3-pseudo-classes/
http://www.smashingmagazine.com/2011/03/30/how-to-use-css3-pseudo-classes/

 SVGs are best used for smooth scaling across display sizes and resolution scales. SVGs

can be declared inline, created dynamically in the DOM, or maintained as separate files

and used as a source for an img element (in which case all the scaling characteristics are

maintained). An svg file can also be used for an iframe source, which has the added

benefit that the SVG’s child elements are accessible in the DOM. As we saw in Chapter

6, preserving the aspect ratio of an SVG is often important, for which you employ the

viewBox and preserveAspectRatio attributes of the svg tag.

 The canvas element provides a drawing surface for WinRT apps, which is to say an API

for creating graphics with lines, rectangles, arcs, text, and so forth. The canvas ultimately

generates raster data, which means that once created, a canvas scales like a bitmap. (An

app, of course, will typically redraw a canvas with scaled coordinates when necessary to

avoid pixelation.) The canvas is also very useful for performing pixel manipulation, even

on individual frames of a video while it’s playing.

Apps often use all three of these elements to draw on their various strengths. I say this because

when canvas first became available, developers seemed so enamored with it that they seemed to

forget how to use img elements, and they ignored the fact that SVGs are often a better choice

altogether! (And did I already say that CSS can accomplish a great deal by itself as well?)

In the end, it’s helpful to think of all the HTML5 graphics elements as ultimately producing a bitmap

that the app host simply renders to the display. You can, of course, programmatically animate the

internal contents of these elements in JavaScript, as we’ll see in Chapter 11, but for our purposes here

it’s helpful to simply think of these as essentially static.

What differs between the elements is how image data gets into the element to begin with. Img

elements are loaded from a source file, svg’s are defined in markup, and canvas elements are filled

through procedural code. But in the end, as the example below demonstrates (Scenario 1 in the HTML

Graphics example for this chapter), each can produce identical results, as shown in Figure 10-1.

FIGURE 10-1 Image, canvas, and svg elements showing identical results.

In short, there are no fundamental differences as to what can be rendered through each type of

element. However, they do have differences that become apparent when we begin to manipulate

those elements as with CSS. This is because each element is just a node in the DOM, plain and simple,

and they are treated like all other nongraphic elements: CSS doesn’t affect the internals of the element,

391

just how it ultimately appears on the page. Individual parts of SVGs declared in markup can, in fact, be

separately styled so long as they can be identified with a CSS selector. In any case, such styling only

affects presentation, so if new styles are applied, they are applied to the original contents of the

element.

What’s also true is that graphics elements can overlap with each other and with nongraphic

elements (as well as video), and the rendering engine automatically manages transparency according

to the z-index of those elements. Each graphic element can have clear or transparent areas, as is built

into image formats like PNG. In a canvas, any areas cleared with the clearRect method that isn’t

otherwise affected by other API calls will be transparent. Similarly, any area in an SVG’s rectangle that’s

not affected by its individual parts will be transparent.

As an example, Scenario 2 in the example allows you to toggle a few styles (with a check box) on the

same elements shown earlier. In this case, I’ve left the background of the canvas element transparent

so that we can see areas that show through. When the styles are applied, the img element gets is

rotated and transformed, the canvas gets scaled, and individual parts of the svg are styled with new

colors, as shown in Figure 10-2.

FIGURE 10-2 Styles applied to graphic elements; individual parts of the SVG can be styled if they are accessible

through the DOM.

The styles in scenario2.css are simple:

.transformImage {

 transform: rotate(30deg) translateX(120px);

}

.scaleCanvas {

 transform: scale(1.5, 2);

}

as is the code in scenario2.js that applies them:

function toggleStyles() {

392

 var applyStyles = document.getElementById("check1").checked;

 document.getElementById("image1").className = applyStyles ? "transformImage" : "";

 document.getElementById("canvas1").className = applyStyles ? "scaleCanvas" : "";

 document.getElementById("r").style.fill = applyStyles ? "purple" : "";

 document.getElementById("l").style.stroke = applyStyles ? "green" : "";

 document.getElementById("c").style.fill = applyStyles ? "red" : "";

 document.getElementById("t").style.fontStyle = applyStyles ? "normal" : "";

 document.getElementById("t").style.textDecoration = applyStyles ? "underline" : "";

}

The other thing you might have noticed when the styles are applied is that the scaled-up canvas

looks rasterized, like a bitmap would typically be. This is expected behavior, as shown in the following

table of scaling characteristics, which are demonstrated in Scenarios 3 and 4 of the example.

Element Scaling Handling layout changes for best appearance

img rasterized Change src attribute for different scales (or just use an SVG file as a source).

canvas rasterized Redraw canvas using scaled dimensions; this is often best done by calling

<context>.scale according to the needed display size while using the same

coordinates in the rest of the code.

svg smooth Not needed. Use viewBox and preseveAspectRatio for proportional scaling.

Additional Characteristics of Graphics Elements
There are a few additional characteristics to be aware of with graphics elements. First, different kinds of

operations will trigger a re-rendering of the element in the document. Second is the mode of

operation of each element. Third are the relative strengths of each element. These are summarized in

the following table:

Element Trigger for re-rendering* Mode Strengths

img Change src attribute

Change of styling via JavaScript

Pixel Fast to render and transform

Great for static elements and static/repeating

backgrounds

Sprite animation by changing src attribute

canvas Calls to context API

Change of styling via JavaScript

Note: re-rendering only happens when

code returns control to the host and

unblocks the UI thread; there are no

visible changes while the code is

manipulating the canvas.

Immediate: API calls are

rendered to pixels and

forgotten

Fine-grained dynamic content

Fast to render after being drawn

Pixel-level manipulation

Excellent for fine-grained dynamic/interactive content

with frequent computation

svg Change to element structure

Change of styling via JavaScript

Retained: all shapes exist as

DOM elements (unless

used as img src)

Smooth scaling

Fine-grained control over individual (retained) elements

Shape-level manipulation

Excellent for interactive graphics, detailed and scalable

393

styling, and dynamic per-shape attributes

Sidebar: Using Media Queries to Show and Hide SVG Elements

Because SVGs generate elements in the DOM, those elements can be individually styled. You can

use this fact along with media queries to hide different parts of the SVG depending on its size. To

do this, add different classes to those SVG elements. Then, in CSS, add or remove the display:

none style for those classes within media queries like @media (min-width:300px) and

(max-width:499px). You may need to do some calculating for the size of the SVG relative to the

app window, but it means that you can effectively remove detail from an SVG rather than

allowing those parts to be rendered with just a few pixels.

In the end, the reason why HTML5 has all three of these elements is because all three are really

needed. All of them also benefit from full hardware acceleration, just as they do in Internet Explorer,

since WinRT apps written in HTML and JavaScript run on the same rendering engine as the browser.

The best practice in app design is to really explore the appropriate use of each type of elements.

Each element can have transparent areas, so you can easily achieve some very fun effects. For example,

if you have data that maps video timings to caption or other text, you can simply use an interval

handler (with the interval set to the necessary granularity like a half-second) to take the video’s

currentTime property, retrieve the appropriate text for that segment, and render the text to an

otherwise transparent canvas that sits on top of the video. Titles and credits can be done in a similar

manner.

Some Tips and Tricks
Working with the HTML graphics elements is generally straightforward, but knowing some details can

help you in working with them inside a WinRT app.

Img Elements

 Use the title attribute of img for tooltips, not the alt attribute. You can also use a

WinJS.UI.Tooltip control as described in Chapter 4, “Controls, Control Styling, and Data

Binding.”

 To create an image from an in-memory stream, see MSApp.createBlobFrom-

RandomAccessStream, the result of which can be then given to URL.createObjectURL

to create an appropriate URL for a src attribute. We’ll encounter this elsewhere in this

chapter, and we’ll need it when working with the Share contract in Chapter 12,

“Contracts.” The same technique also works for audio and video streams.

 When loading images from http:// or other remote sources, you run the risk of having

the element show a red X placeholder image. To prevent this, catch the img.onerror

394

http://msdn.microsoft.com/en-us/library/windows/apps/Hh767329.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/Hh767329.aspx

event and supply your own placeholder:

var myImage = document.getElementById('image');

myImage.onerror = function () { onImageError(this);}

function onImageError(source) {

 source.src = "placeholder.png";

 source.onerror = "";

}

Svg Elements

 <script> tags are not supported within <svg>.

 If you have an SVG file, you can load it into an img element by pointing at the file with

the src attribute, but this doesn’t let you traverse the SVG in the DOM. If you want the

latter behavior, load the SVG in an iframe instead. The SVG contents will then be within

that element’s contentDocument.documentElement property:

<!-- in HTML-->

<iframe id="Mysvg" src="myFolder/mySVGFile.svg" />

// in JavaScript

var svg = document.getElementById("Mysvg").contentDocument.documentElement;

 PNGs generally perform better than SVGs, so if you don’t technically need an SVG or

have a high-performance scenario, consider using scaled PNGs. Or you can dynamically

create a static image (appropriately scaled to the current resolution) from an SVG so as

to use the image for faster rendering later:

<!-- in HTML-->

<canvas id="canvas" style="display: none;" />

// in JavaScript

var c = document.getElementById("canvas").getContext("2d");

c.drawImage(document.getElementById("svg"),0,0);

var imageURLToUse = document.getElementById("canvas").toDataURL();

 Two helpful SVG references (JavaScript examples): http://www.carto.net/papers/svg/samples/ and

http://srufaculty.sru.edu/david.dailey/svg/.

Canvas Elements

All the function names mentioned here are methods of a canvas’s context object:

 Remember that a canvas element needs specific width and height attributes (in

JavaScript, canvas.width and canvas.height), not dimension styles. It does not accept

px, em, %, or other units.

 Despite its name, the closePath method is not a direct complement to beginPath.

395

http://www.carto.net/papers/svg/samples/
http://srufaculty.sru.edu/david.dailey/svg/

beginPath is used to start a new path that can be stroked, clearing any previous path.

closePath, on the other hand, simply connects the two endpoints of the current path,

as if you did a lineTo between those points. It does not clear the path or start a new

one. This seems to confuse programmers quite often, which is why you sometimes see a

circle drawn with a line to the center!

 Paths must be stroked with a call to stroke in order to render; until that time, think of

them as a pencil sketch of something that’s not been inked in. Note also that stroking

implies a call to beginPath.

 When animating on canvas, doing clearRect on the entire canvas and redrawing every

frame is generally easier to work with than clearing many small areas and redrawing

individual parts of the canvas. The app host eventually has to render the entire canvas

in its entirety with every frame anyway to manage transparency, so trying to optimize

performance by clearing small rectangles isn’t an effective strategy except when you’re

only doing a small number of API calls for each frame.

 Rendering canvas API calls is accomplished by converting them to the equivalent

Direct2D calls in the GPU. This draws shapes with automatic antialiasing. As a result,

drawing a shape like a circle in a color and drawing the same circle with the

background color does not erase every pixel. To effectively erase a shape, use

clearRect on an area that’s slightly larger than the shape itself. This is one reason why

clearing the entire canvas and redrawing every frame often ends up being easier.

 To set a background image in a canvas (that you don’t have to draw each time), you

can use the canvas.style.backgroundImage property with an appropriate URL to the

image.

 When using drawImage, you may need to wait for the source image to load using code

such as this:

var img = new Image();

img.onload = function () { myContext.drawImage(myImg, 0, 0); }

myImg.src = "myImageFile.png";

 Although other graphics APIs see a circle as a special case of an ellipse (with x and y

radii being the same), the canvas arc function works with circles only. Fortunately, a

little use of scaling makes it easy to draw ellipses, as shown in the utility function below.

Note that we use save and restore so that the scale call only applies to the arc; it

does not affect the stroke that’s used from main. This is important, because if the

scaling factors are still in effect when you call stroke, the line width will vary instead of

remaining constant.

function arcEllipse(ctx, x, y, radiusX, radiusY, startAngle, endAngle, anticlockwise) {

 //Use the smaller radius as the basis and stretch the other

 var radius = Math.min(radiusX, radiusY);

 var scaleX = radiusX / radius;

396

 var scaleY = radiusY / radius;

 ctx.save();

 ctx.scale(scaleX, scaleY);

 //Note that centerpoint must take the scale into account

 ctx.arc(x / scaleX, y / scaleY, radius, startAngle, endAngle, anticlockwise);

 ctx.restore();

}

 By copying pixel data from a video, it’s possible with the canvas to dynamically

manipulate a video (without affecting the source, of course). This is processor-intensive,

but it’s a useful technique.

Here’s an example of frame-by-frame video manipulation, the technique for which is nicely outlined

in a Windows team blog post, Canvas Direct Pixel Manipulation.53 In the VideoEdit example for this

chapter, default.html contains a video and canvas element in its main body:

<video id="video1" src="ModelRocket1.mp4" muted style="display: none"></video>

<canvas id="canvas1" width="640" height="480"></canvas>

In code (default.js), we call startVideo from within the activated handler. This function starts the

video and uses requestAnimationFrame to do the pixel manipulation for every video frame:

var video1, canvas1, ctx;

var colorOffset = { red: 0, green: 1, blue: 2, alpha: 3 };

function startVideo() {

 video1 = document.getElementById("video1");

 canvas1 = document.getElementById("canvas1");

 ctx = canvas1.getContext("2d");

 video1.play();

 requestAnimationFrame(renderVideo);

}

function renderVideo() {

 //Copy a frame from the video to the canvas

 ctx.drawImage(video1, 0, 0, canvas1.width, canvas1.height);

 //Retrieve that frame as pixel data

 var imgData = ctx.getImageData(0, 0, canvas1.width, canvas1.height);

 var pixels = imgData.data;

 //Loop through the pixels, manipulate as needed

 var r, g, b;

 for (var i = 0; i < pixels.length; i += 4) {

 r = pixels[i + colorOffset.red];

 g = pixels[i + colorOffset.green];

53 See also http://beej.us/blog/2010/02/html5s-canvas-part-ii-pixel-manipulation/.

397

http://windowsteamblog.com/windows/b/developers/archive/2011/02/15/canvas-direct-pixel-manipulation.aspx
http://beej.us/blog/2010/02/html5s-canvas-part-ii-pixel-manipulation/

 b = pixels[i + colorOffset.blue];

 //This creates a negative image

 pixels[i + colorOffset.red] = 255 - r;

 pixels[i + colorOffset.green] = 255 - g;

 pixels[i + colorOffset.blue] = 255 - b;

 }

 //Copy the manipulated pixels to the canvas

 ctx.putImageData(imgData, 0, 0);

 //Request the next frame

 requestAnimationFrame(renderVideo);

}

Here the page contains a hidden video element (style="display: none") that is told to start

playing once the document is loaded (video1.play()). In a ~60 frames per second timer loop (using

requestAnimationFrame), the current frame of the video is copied to the canvas (drawImage) and the

pixels for the frame are copied (getImageData) into the imgData buffer. We then go through that

buffer and negate the color values, thereby producing a photographically negative image (an alternate

formula to change to grayscale is also shown in the code comments, omitted above). We then copy

those pixels back to the canvas (putImageData) so that when we return, those negated pixels are

rendered to the display.

Again, this is processor-intensive as it’s not generally a GPU-accelerated process; it’s much better to

write a video effect DLL where possible as discussed in “Applying a Video Effect” later on. Nevertheless,

it is a useful technique to know. What’s really happening is that instead of drawing each frame with API

calls, we’re simply using the video as a data source. So we could, if we like, embellish the canvas in any

other way we want before returning from the renderVideo function. An example of this that I really

enjoy is shown in Manipulating video using canvas on Mozilla’s developer site, which dynamically sets

green-screen background pixels to be transparent so that an img element placed underneath the video

shows through as a background. The same could even be used to layer two videos so that a

background video is used instead of a static image.

Video Playback and Deferred Loading

Let’s now talk a little more about video playback itself. As we’ve already seen, simply including a video

element in your HTM, or creating an element on the fly gives you playback ability. In the code below,

the video is sourced from a local file, starts playing by itself, loops continually, and provides controls:

<video src="media/ModelRocket1.mp4" controls loop autoplay></video>

As we’ve been doing in this book, we’re not going to rehash the details that are available in the

W3C spec for the video and audio tags, starting at http://www.w3.org/TR/html5/video.html. This spec

will give you all the properties, methods, and events for these elements; especially note the event

summary in section 4.8.10.15, and that most of the properties and methods for both are found in

398

https://developer.mozilla.org/En/Manipulating_video_using_canvas
http://www.w3.org/TR/html5/video.html
http://www.w3.org/TR/html5/media-elements.html#event-definitions

Media elements section 4.8.10. Note that the track element is supported for both video and audio;

you can find an example of using it in Scenario 4 (demonstrating subtitles) of the HTML Media

Playback sample as we won’t be covering it more here.

It’s also helpful to understand that video and audio are closely related, since they’re part of the

same spec. In fact, if you want to just play the audio portion of a video, you can use the Audio object in

JavaScript:

//Play just the audio of a video

var movieAudio = new Audio("http://www.kraigbrockschmidt.com/downloads/media/ModelRocket1.mp4");

movieAudio.load();

movieAudio.play();

For any given video element, you can set the width and height to control the playback size (as to

100% for full-screen). This is important when your app switches between view states, and you’ll likely

have CSS styles for video elements in your various media queries. Also, if you have a control to play full

screen, simply make the video the size of the viewport (after also calling

Windows.UI.ViewManagement.ApplicationView.tryUnsnap if you’re in the snapped view). In

addition, when you create a video element with the controls attribute, it will automatically have a

full-screen control on the far right that does exactly what you expect within a WinRT app:

In short, you don’t need to do anything special to make this work. When the video is full screen, a

similar button (or the ESC key) returns to the normal app view.

Note In case you’re wondering, the audio and video elements don’t provide any CSS pseudo-selectors

for styling the controls bar. As my son’s preschool teacher would say (in reference to handing out

popsicles, but it works here), “You get what you get and you don’t throw a fit and you’re happy with

it.” If you’d like to do something different with these controls, you’ll need to turn off the defaults and

provide controls of your own that would call the element methods appropriately.

When implementing your own controls, be sure to set a timeout to make the controls disappear

(either hiding them or changing the z-index) when they’re not being used. This is especially important

if you have a full-screen button for video like the built-in controls, where you would basically resize

the element to match the screen dimensions. When you do this, Windows will automatically detect this

full-screen video state and do some performance optimizations, but not if any other element is front

of the video. It’s also a good idea to disable any animations you might be running and disable

unnecessary background tasks.

You can use the various events of the video element to know when the video is played and paused,

among other things (though there is not an event for going full-screen), but you should also respond

appropriately when hardware buttons for media control are being used. For this purpose, listen for

events coming from the Windows.Media.MediaControl object, such as playpressed, pausepressed,

and so on. Refer to the Configure keys for media sample for a demonstration, but adding the listeners

generally looks like this:

399

http://www.w3.org/TR/html5/media-elements.html
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.viewmanagement.applicationview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.mediacontrol.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Buttons-ea57d8e2

mediaControl = Windows.Media.MediaControl;

mediaControl.addEventListener("soundlevelchanged", soundLevelChanged, false);

mediaControl.addEventListener("playpausetogglepressed", playpause, false);

mediaControl.addEventListener("playpressed", play, false);

mediaControl.addEventListener("stoppressed", stop, false);

mediaControl.addEventListener("pausepressed", pause, false);

I also mentioned that you might want to defer loading a video until it’s needed and show a preview

image in its place. This is accomplished with the poster attribute, whose value is the image to use:

<video id="video1" poster="media/rocket.png" width="640" height="480"></video>

var video1 = document.getElementById("video1");

var clickListener = video1.addEventListener("click", function () {

 video1.src = "http://www.kraigbrockschmidt.com/downloads/media/ModelRocket1.mp4";

 video1.load();

 //Remove listener to prevent interference with video controls

 video1.removeEventListener("click", clickListener);

 video1.addEventListener("click", function () {

 video1.controls = true;

 video1.play();

 });

});

In this case I’m not using preload="true" or even providing a src value so that nothing is

transferred until the video is tapped. When a tap occurs, that listener is removed, the video’s own

controls are turned on and playback is started. This, of course, is a more roundabout method; often

you’ll use preload="true" controls src="..." directly in the video element, as the poster attribute

will handle the preview image.

Disabling Screen Savers and the Lock Screen During Playback
When playing video, especially full-screen, it’s important to disable any automatic timeouts that would

blank the display or lock the device. This is done through the

Windows.System.Display.DisplayRequest object. Before starting playback, create an instance of this

object and call its requestActive method.

var displayRequest = new Windows.System.Display.DisplayRequest();

displayRequest.requestActive();

If this call succeeds, you’ll be guaranteed that the screen will stay active despite user interactivity.

When the video is complete, be sure to call requestRelease. Note that Windows will automatically

deactivate such requests when your app is moved to the background, and it will reactivate them when

the user switches back.

400

Video Element Extension APIs
Beyond the HTML5 standards for video elements, some additional properties and methods are added

to them in Windows 8, as shown in the following table and documented on the video element page.

Also note the references to the HTML Media Playback sample where you can find some examples of

using these.

Properties Description

msHorizontalMirror A Boolean that controls whether the playback is flipped horizontally. This is particularly

useful when sourcing the video element from a camera to make sure the user sees the

proper orientation.

msZoom A Boolean that indicates whether to allow the video element to fit inside its display space

by trimming the top/bottom or left/right (when true). This allows apps to give users

control over videos whose aspect ratio differs from that of its given display area—that is,

to remove letterboxing or sidepillars. For a demonstration, refer to Scenario 3 of the HTML

Media Playback sample.

msIsLayoutOptimalForPlayback
(onMSVideoOptimalLayoutChanged)

A Boolean that indicates whether a video will have the best playback based on its layout.

When this changes the onMSVideoOptimalLayoutChanged event fires. For details,

see How to optimize video rendering and Audio and Video Performance.

msIsStereo3D A Boolean that indicates whether the system considers the video element’s source to be

3D (based on metadata in the video itself). Whether the system it itself capable can be

determined through

Windows.Graphics.Display.DisplayProperties.stereoEnabled. Apps can also

listen for Windows.Graphics.Display.DisplayProperties.stereoEnabledChanged

to know when the capabilities change.

For details on this and other Stereo 3D concerns, refer to How to enable stereo video

playback and Scenario 5 of the HTML Media Playback sample.

msStereo3DRenderMode Can be mono (the default) or stereo so that apps can control playback. (See above for

references.)

msStereo3DPackingMode Can be none (2D default), topbottom, or sidebyside; this is an adjustment

available to apps when the video metadata doesn’t clearly indicate which orientation to

use. (See above for references.)

msRealtime Enables the media to reduce initial latency as much as possible for playback. This is

important for two-way communication apps, for example as well as gaming chat, but

should be used carefully. For details, refer to How to enable low-latency playback and the

Real-time Communications sample.

msPlayTo
msPlayToDisabled
msPlayToPrimary
msPlayToSource

Properties related to Windows’ PlayTo feature. See the “PlayTo” section at the end of this

chapter. Note that these are also available on img and audio elements as well.

msAudioTracks An array of audio track descriptions to support additional languages or other tracks (e.g.,

commentary). Set msAudioTracks.selectedTrack to the desired index to

change the playback audio. For details, refer to How to select audio tracks in different

languages as well as Scenario 2 of the HTML Media Playback sample.

msAudioCategory Identifies the kind of audio being played in the video; see “Playback Manager and

Background Audio” later for the specific values. Note that setting this to

"Communications" will also set the device type to "Communications" and force

msRealtime to true.

msAudioDeviceType Specified the output devices that audio will be sent to; see “Audio Element Extension

APIs.”

401

http://msdn.microsoft.com/en-us/library/windows/apps/hh465962.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://msdn.microsoft.com/en-us/library/windows/apps/hh452785.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848311.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.display.displayproperties.stereoenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.display.displayproperties.stereoenabledchanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452749.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452749.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://msdn.microsoft.com/en-us/library/windows/apps/hh452742.aspx
http://code.msdn.microsoft.com/Simple-Communication-Sample-eac73290
http://msdn.microsoft.com/en-us/library/windows/apps/hh452774.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452774.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9

Methods Description

msFrameStep
(onMSVideoFrameStepCompleted)

Steps the video by one frame forward or backward. The

onMSVideoFrameStepCompleted event fires when the step is complete.

msInsertVideoEffect
msInsertAudioEffect
msClearEffects

Adds or removes effects during playback (see below). All are available on video;

msInsertVideoEffect is not available on audio elements.

msSetMediaProtectionManager Used for DRM with both audio and video; see “Streaming from a Server and Digital

Rights Management (DRM)” toward the end of this chapter.

msSetVideoRectangle Sets the dimension of a subrectangle within a video.

onMSVideoFrameStepCompleted
(event)

Occurs when the video format changes.

The Source Attribute and Custom Codecs

Video (and audio) elements can use the HTML5 source attribute. In web applications, multiple

source elements are used to provide alternate video formats in case a client system doesn’t have

the necessary codec for the primary source. Given that the list of supported formats in Windows

is well known (refer again to Supported audio and video formats), this isn’t much of a concern

for WinRT apps. However, source is still useful because it can identify the specific codecs for the

source:

<video controls loop autoplay>

 <source src="video1.vp8" type="video/webm" />

</video>

This is important when you need to provide a custom codec for your app through

Windows.Media.MediaExtensionManager, outlined in the “Custom Decoders/Encovers and

Scheme Handlers” section later in this chapter, as the codec identifies the extension to load for

decoding. I show WebM as an example here because it’s not directly available to WinRT apps

(though it is in Internet Explorer). When the app host running a WinRT app encounters the video

element above, it will look for a matching decoder for the specified type.

Applying a Video Effect
The earlier table shows that video elements have msInsertVideoEffect and msInsertAudioEffect

methods on them. WinRT provides a built-in video stabilization effect that is easily applied to an

element, as demonstrated in Scenario 3 of the Media extensions sample (which plays the same video

with and without the effect, so the stabilized one is muted):

vidStab.msClearEffects();

vidStab.muted = true;

vidStab.msInsertVideoEffect(Windows.Media.VideoEffects.videoStabilization, true, null);

Custom effects, as demonstrated in Scenario 4 of the sample, are implemented as separate

dynamic-link libraries (or DLLs), typically in C++ for best performance, and are included in the app

402

http://msdn.microsoft.com/en-us/library/windows/apps/hh986969.aspx
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096

package because a WinRT app can install a DLL only for its own use and not for systemwide access.

With the sample you’ll find DLL projects for a grayscale, invert, and geometric effects, where the latter

has three options for fisheye, pinch, and warp. In the CustomEffect.js file you can see how these are

applied, with the first parameter to msInsertVideoEffect being a string that identifies the effect as

exported by the DLL (see, for instance, the InvertTransform.idl file in the InvertTransform project):

vid.msInsertVideoEffect("GrayscaleTransform.GrayscaleEffect", true, null);

vid.msInsertVideoEffect("InvertTransform.InvertEffect", true, null);

The second parameter to msInsertVideoEffect, by the way, indicates whether the effect is

required, so it’s typically true. The third is a parameter called config, which just contains additional

information to pass to the effect. In the case of the geometric effects in the sample, this parameter

specifies the particular variation:

var effect = new Windows.Foundation.Collections.PropertySet();

effect["effect"] = effectName;

vid.msClearEffects();

vid.msInsertVideoEffect("PolarTransform.PolarEffect", true, effect);

where effectName will be either “Fisheye”, “Pinch”, or “Warp”.

Audio effects, not shown in the sample, are applied the same way with msInsertAudioEffect (with

the same parameters). Do note that each element can have at most two effects per media stream. A

video element can have two video effects and two audio effects; an audio element can have two audio

effects. If you try to add more, the methods will throw an exception. This is why it’s a good idea to call

msClearEffects before inserting any others.

For additional discussion on effects and other media extensions, see Using media extensions.

Browsing Media Servers
Many households, including my own, have one or more media servers available on the local network

from which apps can play media. Getting to these servers is the purpose of the one other property in

Windows.Storage.KnownFolders that we haven’t mentioned yet: mediaServerDevices. As with other

known folders, this is simply a StorageFolder object through which you can then enumerate or query

additional folders and files. In this case, if you call its getFoldersAsync, you’ll receive back a list of

available servers, each of which is represented by another StorageFolder. From there you can use file

queries, as discussed in Chapter 8, “State, Settings, Libraries, and Documents,” to search for the types of

media you’re interested in or apply user-provided search criteria.

An example of this can be found in the Media Server client sample of the Windows SDK.

Audio Playback and Mixing

As with video, the audio element provides its own playback abilities, including controls, looping, and

403

http://msdn.microsoft.com/en-us/library/windows/apps/hh700365.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Server-sample-fffbe490

autoplay:

<audio src="media/SpringyBoing.mp3" controls loop autoplay></audio>

Again, as described earlier, the same W3C spec applies to both video and audio elements. The

same code to play just the audio portion of a video is exactly what we use to play an audio file:

var sound = new Audio("media/SpringyBoing.mp3");

sound1.msAudioCategory = "SoundEffect";

sound1.load(); //For pre-loading media

sound1.play(); //At any later time

As also mentioned before, creating an Audio object without controls and playing it has no effect on

layout, so this is what’s generally used for sound effects in games and other apps.

As with video, it’s important for apps that do audio playback to respond appropriately to the events

coming from the Windows.Media.MediaControl object, especially playpressed, pausepressed,

stoppressed, and playpausetogglepressed. This lets the user control audio playback with hardware

buttons, which you would use when playing music tracks, for instance. However, you would not apply

these events to other kinds of audio, such as game sounds.

Speaking of which, an interesting aspect of audio is how to mix multiple sounds together, as games

generally require. Here it’s important to understand that each audio element can be playing one

sound: it only has one source file and one source file alone. However, multiple audio elements can be

playing at the same time with automatic intermixing depending on their assigned categories. (See

“Playback Manager and Background Audio” below.) In this example, some background music plays

continually (loop is set to true, and the volume is halved) while another sound is played in response to

taps (see the AudioPlayback example with this chapter’s content):54

var sound1 = new Audio("media/SpringyBoing.mp3");

sound1.load(); //For pre-loading media

//Background music

var sound2 = new Audio();

sound2.msAudioCategory = "ForegroundOnlyMedia"; //Set this before setting src

sound2.src = "http://www.kraigbrockschmidt.com/mp3/WhoIsSylvia_PortlandOR_5-06.mp3";

sound2.loop = true;

sound2.volume = 0.5; //50%;

sound2.play();

document.getElementById("btnSound").addEventListener("click", function () {

 //Reset position in case we're already playing

 sound1.currentTime = 0;

 sound1.play();

});

By loading the tap sound when the object is created, we know we can play it at any time. When

54 And yes, I am playing the guitar and singing the lead part in this live recording, along with my friend Ted Cutler. The

song, Who is Sylvia?, was composed by another friend, J. Donald Walters, using lyrics of Shakespeare.

404

http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.mediacontrol.aspx

initiating playback, it’s a good idea to set the currentTime to 0 so that the sound always plays from

the beginning.

The question with mixing, especially in games, really becomes how to manage many different

sounds without knowing ahead of time how they will be combined. You may need, for instance, to

overlap three playbacks of the same sound with different starting times, but it’s impractical to declare

three audio elements with the same source.

The technique that’s emerged is to use “rotating channels” as described on the Ajaxian website. To

summarize:

1. Declare audio elements for each sound (with preload="auto").

2. Create a pool (array) of Audio objects for however many simultaneous channels you need.

3. To play a sound:

a. Obtain an available Audio object from the pool.

b. Set its src attribute to one that matches a preloaded audio elements.

c. Call that pool object’s play method.

As sound designers in the movies have discovered, it is possible to have too much sound going on

at the same time, because it gets really muddied. So you may not need more than a couple dozen

channels at most.

Hint Need some sounds for your app? Check out http://www.freesound.org.

Audio Element Extension APIs
As with the video element, a few extensions are available on audio elements as well, namely those to

do with effects (msInsertAudioEffect), DRM (msSetMediaProtectionManager), PlayTo

(msPlayToSource, etc.), msRealtime, and msAudioTracks, as listed earlier in “Video Element Extension

APIs.“ In fact, every extension API for audio exists on video, but two of them have primary importance

for audio:

 msAudioDeviceType Allows an app to determine which output device audio will

render to: "Console" (the default) and "Communications". This way an app that knows

it’s doing communication (like chat) doesn’t interfere with media audio.

 msAudioCategory Identifies the type of audio being played (see table in the next

section). This is very important for identifying whether audio should continue to play in

the background (thereby preventing the app from being suspended), as described in

the next section. Note that you should always set this property before setting the

audio’s src and that setting this to "Communications" will also set the device type to

"Communications" and force msRealtime to true.

405

http://ajaxian.com/archives/html5-audio-tutorial-rotating-channels
http://www.freesound.org/

Do note that despite the similarities between the values in these properties, msAudioDeviceType is

for selecting an output device whereas msAudioCategory identifies the type of audio that’s being

played through whatever device. A communications category audio could be playing through the

console device, for instance, or a media category could be playing through the communications device.

The two are separate concepts.

Playback Manager and Background Audio
To explore different kinds of audio playback, let’s turn our attention to the Playback Manager

msAudioCategory sample in the Windows SDK. I won’t show a screen shot of this because, doing

nothing but audio, there isn’t much to show! Instead, let me outline what its different scenarios

demonstrate in terms of audio behavior in the following table, as well as list those categories that

aren’t represented in the sample but that can be used in your own app. In each scenario you need to

first select an audio file through the file picker.

Scenario msAudioCategory Description

1 BackgroundCapableMedia Plays the selected audio when the app is both visible and in the background.

With this category, the app will not be suspended when in the background,

which you can confirm through Task Manager. This is typically used for playing

local playlists, local or streaming media files, music videos, etc.

2 Communications Like BackgroundCapableMedia, this will also continue to play the

selected audio when the app is in the background. Use this for peer-to-peer

chat, VoIP, etc.

3 Other (the default for audio

elements)

Plays the selected audio when the app is in the foreground, mixing with

background audio; the audio is paused when the app is in the background.

4 ForegroundOnlyMedia Plays the selected audio when the app is in the foreground; the audio is paused

when the app is in the background. When audio of this category is played,

background audio will be muted.

5 Alert Plays the selected audio when the app is in the foreground and attenuates

background audio. This is used for app notifications like ringtones as well as

system alerts.

n/a GameMedia Used for background music in a game.

n/a GameEffects Used for game sound effects intended to mix with existing audio (all nonmusic

sounds).

n/a SoundEffects Other sound effects (outside of games) intended to mix in with existing audio,

such as brief dings, beeps, boinks, and blurps that indicate activity but don’t

otherwise quality as alerts.

Where a single audio stream is concerned, there isn’t always a lot of difference between some of

these categories. Yet as the table indicates, different categories have different effects on other

simultaneous audio streams. For the purpose, the Windows SDK does an odd thing by providing a

second identical sample to the first, Playback Manager msAudioCategory sample(2). This allows you

406

http://code.msdn.microsoft.com/windowsapps/Playback-Manager-e6526e67D:/Book/Playback%20Manager%20msAudioCategory%20sample
http://code.msdn.microsoft.com/windowsapps/Playback-Manager-e6526e67D:/Book/Playback%20Manager%20msAudioCategory%20sample
http://code.msdn.microsoft.com/windowsapps/Playback-Manager2-55c5b86dhttp:/code.msdn.microsoft.com/windowsapps/Playback-Manager-e6526e67D:/Book/Playback%20Manager%20msAudioCategory%20sample

run these apps at the same time (one in snapped view, the other in filled view) and play audio with

different category settings to see how they combine.

How different audio streams combine is a subject that’s discussed in the Audio Playback in a

Windows 8 App whitepaper. However, what’s most important is that you assign the most appropriate

category to any particular audio stream. These categories help the playback manager perform the right

level of mixing between audio streams according to user expectations, both with multiple streams in

the same app, and streams coming from multiple apps. For example, users will expect that alarms,

being an important form of notification, will temporarily attenuate other audio streams. Similarly, users

will expect that an audio stream of a foreground app will takes precedence over a stream of the same

category of audio playing in the background. As a developer, then, avoid playing games with the

categories. Just assign the most appropriate category to your audio stream so that the playback

manager can do its job with audio from all sources and deliver a consistent experience for the entire

system.

Setting an audio category for any given audio element is a simple matter of settings its

msAudioCategory attribute. Every scenario in the samples does the same thing for this, making sure to

set the category before setting the src attribute (shown here from backgroundcapablemedia.js):

audtag = document.createElement('audio');

audtag.setAttribute("msAudioCategory", "BackgroundCapableMedia");

audtag.setAttribute("src", fileLocation);

You could accomplish the same thing in markup, of course. Some examples:

<audio id="audio1" src="song.mp3" msAudioCategory="BackgroundCapableMedia"></audio>

<audio id="audio2" src="voip.mp3" msAudioCategory="Communications"></audio>

<audio id="audio3" src="lecture.mp3" msAudioCategory="Other"></audio>

With BackgroundCapableMedia and Communcations, however, simply setting the category isn’t

sufficient: you also need to declare an audio background task extension in your manifest. This is easily

accomplished by going to the Declarations tab in the manifest designer:

407

http://msdn.microsoft.com/en-us/library/windows/hardware/hh770517
http://msdn.microsoft.com/en-us/library/windows/hardware/hh770517

First, select Background Tasks from the Available Declarations drop-down list. Then check Audio

under Supported Task Types, and identify a Start page under App Settings. This latter page isn’t really

essential for background audio (because you’ll never be launched for this purpose), but you need to

provide something to make the manifest editor happy.

These declarations appear as follows in the manifest XML, should you care to look:

<Application Id="App" StartPage="default.html">

 <!-- ... -->

 <Extensions>

 <Extension Category="windows.backgroundTasks" StartPage="default.html">

 <BackgroundTasks>

 <Task Type="audio" />

 </BackgroundTasks>

 </Extension>

 </Extensions>

</Application>

Furthermore, background audio must also add listeners for the Windows.Media.MediaControl

events that we’ve already mentioned so that the app can properly control playback when asked.

They’re required because they make it possible for the playback manager to control the audio streams

as the user switches between apps. Otherwise, your audio will always be paused and muted when the

app goes into the background.

408

http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.mediacontrol.aspx

How to do this is shown in the Playback Manager sample for all its scenarios; the following is from

communications.js (some code omitted):

mediaControl = Windows.Media.MediaControl;

mediaControl.addEventListener("soundlevelchanged", soundLevelChanged, false);

mediaControl.addEventListener("playpausetogglepressed", playpause, false);

mediaControl.addEventListener("playpressed", play, false);

mediaControl.addEventListener("stoppressed", stop, false);

mediaControl.addEventListener("pausepressed", pause, false);

// audTag variable is the global audio element for the page

function playpause() {

 if (!audtag.paused) {

 audtag.pause();

 } else {

 audtag.play();

 }

}

function play() {

 audtag.play();

}

function stop() {

 // Nothing to do here

}

function pause() {

 audtag.pause();

}

function soundLevelChanged() {

 //Catch SoundLevel notifications and determine SoundLevel state.

 //If it's muted, we'll pause the player.

 var soundLevel = Windows.Media.MediaControl.soundLevel;

 //No actions are shown here, but the options are spelled out to show the enumeration

 switch (soundLevel) {

 case Windows.Media.SoundLevel.muted:

 break;

 case Windows.Media.SoundLevel.low:

 break;

 case Windows.Media.SoundLevel.full:

 break;

 }

 appMuted();

}

function appMuted() {

 if (audtag) {

409

 if (!audtag.paused) {

 audtag.pause();

 }

 }

}

Technically speaking, a handler for soundlevelchanged is not required here, but the other four are.

Such a minimum implementation is part of the AudioPlayback example with this chapter.

Playing Sequential Audio
An app that’s playing audio tracks (such as music, an audio book, or recorded lectures) will often have

a list of tracks to play sequentially, including while the app is running in the background. In this case

it’s important to start the next track quickly because Windows will otherwise suspend in 10 seconds

after the current audio is finished. For this purpose, listen for the audio element’s ended event and set

the audio.src attribute to the next track. A good optimization in this case is to create a second Audio

object and set its src attribute after the first track starts to play. This way that second track will be

preloaded and ready to go right away, thereby avoiding potential delays in playback between tracks.

This is shown in the AudioPlayback example for this chapter, where I’ve split the one complete song

into four segments for continuous playback:

function playSegments() {

 var playlist = ["media/segment1.mp3", "media/segment2.mp3", "media/segment3.mp3", "media/segment4.mp3"];

 var curSong = 0;

 //Pause the other music

 document.getElementById("musicPlayback").pause();

 //Set up the first track

 var audio1 = document.getElementById("audioSegments");

 setMediaControl(audio1);

 audio1.src = playlist[0];

 //Show the element and play (it's initially hidden)

 audio1.style.display = "";

 audio1.volume = 0.5; //50%;

 audio1.play();

 //Preload the next track in readiness for the switch

 var preload = document.createElement("audio");

 preload.setAttribute("preload", "auto");

 preload.src = playlist[1];

 //Switch to the next track as soon as one had ended.

 audio1.addEventListener("ended", function () {

 curSong++;

 if (curSong < playlist.length) {

 //This track should already be loaded

 audio1.src = playlist[curSong];

 audio1.play();

410

 //Set up the next preload

 var nextTrack = curSong + 1;

 if (nextTrack < playlist.length) {

 preload.src = playlist[nextTrack];

 }

 }

 });

}

Note When playing sequential tracks from a WinRT app written in JavaScript and HTML, you might

notice very brief gaps between the tracks, especially if the first track flows directly into the second. This

is a present limitation of the platform given the layers that exist between the HTML audio element

and the low-level XAudio2 APIs that are ultimately doing the real work. You can mitigate the effects to

some extent—for example, you can cross-fade the two tracks or cross-fade a third overlay track that

contains a little of the first and a little of the second track. You can also use a negative time offset to

start playing the next track slightly before the previous one ends. But if you a truly seamless transition,

you’ll need to use the XAudio2 APIs from a WinRT component to set up direct playback and bypass

the audio element.

Playlists

The multitrack playback example in the previous section is clearly contrived because an app wouldn’t

typically have an in-memory playlist. More likely an app would load an existing playlist or create one

from files that a user has selected.

WinRT supports these actions through a simple API in the Windows.Media.Playlists namespace,

using the WPL (Windows Media Player), ZPL (Zune), and M3U formats. The Playlist sample in the

Windows SDK (which almost wins the prize for the shortest sample name!) shows how to perform

various tasks with the API. In Scenario 1 it lets you choose multiple files by using the file picker, creates

a new Windows.Media.Playlists.Playlist object, adds those files to its files list (a vector of

StorageFile objects), and saves the playlist with its saveAsAsync method (this code from create.js is

simplified and reformatted a bit):

function pickAudio() {

 var picker = new Windows.Storage.Pickers.FileOpenPicker();

 picker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.musicLibrary;

 picker.fileTypeFilter.replaceAll(SdkSample.audioExtensions);

 picker.pickMultipleFilesAsync().done(function (files) {

 if (files.size > 0) {

 SdkSample.playlist = new Windows.Media.Playlists.Playlist();

 files.forEach(function (file) {

 SdkSample.playlist.files.append(file);

 });

411

http://msdn.microsoft.com/en-us/library/windows/apps/br206938.aspx
http://code.msdn.microsoft.com/windowsapps/Playlist-sample-3d80daee
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.playlists.playlist.aspx

 SdkSample.playlist.saveAsAsync(Windows.Storage.KnownFolders.musicLibrary,

 "Sample", Windows.Storage.NameCollisionOption.replaceExisting,

 Windows.Media.Playlists.PlaylistFormat.windowsMedia)

 .done();

 }

}

Notice that saveAsAsync takes a StorageFolder and a name for the file (along with an optional

format parameter). This accommodates a common use pattern for playlists where a music app has a

single folder where it stores playlists and provides users with a simple means to name them and/or

select them. In this way, playlists aren’t typically managed like other user data files where one always

goes through a file picker to do a Save As into an arbitrary folder. You could use FileSavePicker, of

course, get a StorageFile, and then use its path property to get to the appropriate StorageFolder,

but more likely you’ll just save playlists in one place and present them as entities that appear only

within the app itself.

For example, the Music app that comes with Windows 8 allows you create a new playlist when

you’re viewing tracks of some album. The following commands appear on the app bar (left), and when

you select New Playlist, a flyout appears (middle) requesting the name, after which the flyout appears

on the app bar (right):

The playlist then appears within the app as another album. In other words, though playlists might

be saved in discrete files, they aren’t necessarily presented that way to the user, and the API reflects

that usage pattern.

Loading a playlist uses the Playlist.loadAsync method given a StorageFile for the playlist. This

might be a StorageFile obtained from a file picker or from the enumeration of the app’s private

playlist folder. Scenario 2 of the Playlist sample (display.js) demonstrates the former, where it then goes

412

through each file and requests their music properties:

function displayPlaylist() {

 var picker = new Windows.Storage.Pickers.FileOpenPicker();

 picker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.musicLibrary;

 picker.fileTypeFilter.replaceAll(SdkSample.playlistExtensions);

 var promiseCount = 0;

 picker.pickSingleFileAsync()

 .then(function (item) {

 if (item) {

 return Windows.Media.Playlists.Playlist.loadAsync(item);

 }

 return WinJS.Promise.wrapError("No file picked.");

 })

 .then(function (playlist) {

 SdkSample.playlist = playlist;

 var promises = {};

 // Request music properties for each file in the playlist.

 playlist.files.forEach(function (file) {

 promises[promiseCount++] = file.properties.getMusicPropertiesAsync();

 });

 // Print the music properties for each file. Due to the asynchronous

 // nature of the call to retrieve music properties, the data may appear

 // in an order different than the one specified in the original playlist.

 // To guarantee the ordering we use Promise.join with an associative array

 // passed as a parameter, containing an index for each individual promise.

 return WinJS.Promise.join(promises);

 })

 .done(function (results) {

 var output = "Playlist content:\n\n";

 var musicProperties;

 for (var resultIndex = 0; resultIndex < promiseCount; resultIndex++) {

 musicProperties = results[resultIndex];

 output += "Title: " + musicProperties.title + "\n";

 output += "Album: " + musicProperties.album + "\n";

 output += "Artist: " + musicProperties.artist + "\n\n";

 }

 if (resultIndex === 0) {

 output += "(playlist is empty)";

 }

 }, function (error) {

 // ...

 });

}

We’ll come back to working with these special properties in the next section, as the process also

applies to other types of media.

413

The other method for managing a playlist is PlayList.saveAsync, which takes a single

StorageFile. This is what you’d use if you’ve loaded and modified a playlist and simply want to save

those changes (typically done automatically when the user adds or removes items from the playlist).

This is demonstrated in Scenarios 3, 4, and 5 of the sample (add.js, remove.js, and clear.js), which just

use methods of the Playlist.files vector like append, removeAtEnd, and clear, respectively.

Playback of a playlist depends, of course, on the type of media involved, but typically you’d load a

playlist and sequentially take the next StorageFile object from its files vector, pass it to

URL.createObjectURL, and then assign that URL to the src attribute of an audio or video element.

You could also use playlists to manage lists of images for specific slide shows as well.

Loading and Manipulating Media

A user might store media files anywhere, but images, music, and videos are typically stored in the user’s

Pictures, Music, and Videos libraries specifically. Simply said, these are the folders that media apps

should use by default until the user indicates otherwise through a folder picker. As we saw in Chapter

8, apps can declare programmatic access to the pictures, music, and videos library in its manifest and

acquire the StorageFolder objects for these through Windows.Storage.KnownFolders:

var picsLib = Windows.Storage.KnownFolders.picturesLibrary;

var musicLib = Windows.Storage.KnownFolders.musicLibrary;

var vidsLib = Windows.Storage.KnownFolders.videosLibrary;

A photos app will typically declare the capability for the Pictures library and display those contents

in a ListView by default. A music and videos app will do the same for their respective libraries, as you

can see in the built-in Photos, Music, and Videos apps in Windows 8. Remember too that if you forget

to declare the appropriate capabilities, the lines of code above will throw access denied exceptions.

You’ll know right away if you forgot these important details.

I should warn you ahead of time that working with media can become very complicated and

intricate. For that reason you’ll probably find it helpful to refer to some of the topics in the

documentation, such as Processing image files, Transcoding, and Using media extensions.

Media File Metadata
With a StorageFolder in hand for some media library or subset thereof, you can use, as we also saw in

Chapter 8, its getItemsAsync method to retrieve its contents. You can also use file queries to

enumerate those files that match specific criteria. Whatever the case, you end up with a collection of

StorageFile objects that you can work with however you want.

Now comes the interesting part. As I mentioned in Chapter 8, you can retrieve additional metadata

for those files. This has a number of layers that you discover when you start opening some of the

secrets doors of the StorageFile class, as illustrated in Figure 10-3. The following sections discuss

these areas in turn.

414

http://msdn.microsoft.com/en-us/library/windows/apps/hh465103.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452806.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/Hh700365.aspx

FIGURE 10-3 Relationships between the StorageFile object and others obtainable through it.

Thumbnails

First, StorageFile.getThumbnailAsync method provides a thumbnail image appropriate for a

particular “mode” from the Windows.Storage.FileProperties.ThumbnailMode enumeration. Options

here are picturesView, videosView, musicView, documentsView, listView, and singleItem. What

you get back from this method (through the completed handler when you call done on the async

promise) is a StorageItemThumbnail object that provides thumbnail data as a stream that you can

conveniently pass to our old friend URL.createObjectURL for display in an img element and whatnot.

Examples of this are found throughout the Retrieve thumbnails for files and folders sample. Scenario

1, for instance (js/scenario1.js), obtains the thumbnail and displays it in an img element:

file.getThumbnailAsync(thumbnailMode, requestedSize, thumbnailOptions).done(function (thumbnail) {

 if (thumbnail) {

 outputResult(file, thumbnail, modeNames[modeSelected], requestedSize);

 }

 // ...

});

function outputResult(item, thumbnailImage, thumbnailMode, requestedSize) {

 document.getElementById("picture-thumb-imageHolder").src = URL.createObjectURL(thumbnailImage,

 { oneTimeOnly: true });

 // ...

}

Common File Properties

Common file properties—those that exist on all files—are found in a number of different places. Very

415

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.fileproperties.thumbnailmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.fileproperties.storageitemthumbnail.aspx
http://code.msdn.microsoft.com/windowsapps/File-thumbnails-sample-17575959

common properties are found on the StorageFile object directly, like attributes, contentType,

dateCreated, displayName, displayType, fileType, name, and path.

The next group is obtained through StorageFile.getBasicPropertiesAsync. This gives you a

Windows.Storage.FileProperties.BasicProperties object that contains dateModified, itemDate, and

size properties. That’s a snoozer, you’re saying to yourself! Well, this object also has an additional

method called retrievePropertiesAsync method that gives you an array of name-value pairs for all

kinds of other stuff.

The trick to understand here is that you have to give an array of the property names you want to

retrievePropertiesAsync where each name is a string that comes from a very extensive list of

Windows Properties, such as System.FileOwner and System.FileAttributes. An example of this is given in

Scenario 5 of the File Access sample we saw in Chapter 8:

var dateAccessedProperty = "System.DateAccessed";

var fileOwnerProperty = "System.FileOwner";

SdkSample.sampleFile.getBasicPropertiesAsync().then(function (basicProperties) {

 outputDiv.innerHTML += "Size: " + basicProperties.size + " bytes
";

 outputDiv.innerHTML += "Date modified: " + basicProperties.dateModified + "
";

 // Get extra properties

 return SdkSample.sampleFile.properties.retrievePropertiesAsync([fileOwnerProperty,

 dateAccessedProperty]);

}).done(function (extraProperties) {

 var propValue = extraProperties[dateAccessedProperty];

 if (propValue !== null) {

 outputDiv.innerHTML += "Date accessed: " + propValue + "
";

 }

 propValue = extraProperties[fileOwnerProperty];

 if (propValue !== null) {

 outputDiv.innerHTML += "File owner: " + propValue;

 }

});

What’s very useful about this is that you can first get to just about any property you want in this way

(the list of properties has hundreds of options) and then modify the array and call

BasicProperties.savePropertiesAsync. Voila! You’ve just updated those properties on the file. A

variation of savePropertiesAsync also lets you pass a specific array of name-value pairs if you only

want to change specific ones.

The third set of properties is found by going through the secret door of StorageFile.properties.

This contains a StorageItemContentProperties object whose retrievePropertiesAsync and

savePropertiesAsync methods are like those we just saw for BasicProperties. What’s more

interesting is that it also has four other methods—getDocumentPropertiesAsync,

getImagePropertiesAsync, getMusicPropertiesAsync, and getVideoPropertiesAsync—which are

how you get to the really specific stuff for individual file types as we’ll see next.

416

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.fileproperties.basicproperties.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd561977(v=vs.85).aspx
http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.fileproperties.storageitemcontentproperties.aspx

Media-Specific Properties

Alongside the BasicProperties class in the Windows.Storage.FileProperties namespace we also

find those returned by the StorageFile.properties.get*PropertiesAsync methods:

DocumentProperties, ImageProperties, MusicProperties, and VideoProperties. Though we’ve had

to dig deep to find these, they each contain deeper treasure troves of information—and I do mean

deep! The tables below summarize each of these in turn. Note that each object type contains a

retrievePropertiesAsync method, like that of BasicProperties, that lets you request additional

properties by name that aren’t already included in the main properties object. Refer to the links at the

top of the table for the references that identify the most relevant Windows properties.

ImageProperties from StorageFile.properties.getImagePropertiesAsync

Additional properties System.Image, System.Photo, System.Media

Property DataType Applicable Windows Property

title String System.Title

dateTaken Date System.Photo.DateTaken

latitude Double (see below) System.GPS.LatitudeDecimal,

or combination of System.GPS.Latitude,

System.GPS.LatitudeDenominator,

System.GPS.LatitudeNumerator, and

System.GPS.LatitudeRef

longitude Double (see below) System.GPS.LongitudeDecimal,

or combination of System.GPS.Longitude,

System.GPS.LongitudeDenominator,

System.GPS.LongitudeNumerator, and

System.GPS.LongitudeRef

cameraManufacturer String System.Photo.CameraManufacturer

cameraModel String System.Photo.CameraModel

width Number in pixels System.Image.HorizontalSize

height Number in pixels System.Image.VerticalSize

orientation Windows.Storage.FileProperties.-
PhotoOrientation containing

unspecified, normal, flipHorizontal,

flipVertical, transpose, transverse,

rotate90, rotate180, rotate270

System.Photo.Orientation

peopleNames String vector System.Photo.PeopleNames

keywords String vector System.Keywords

rating Number (1-99 with 0 meaning “no rating”) System.Rating

VideoProperties from StorageFile.properties.getVideoPropertiesAsync

Additional properties System.Video, System.Media, System.Image, System.Photo

Property DataType Applicable Windows Property

title String System.Title

subtitle String System.Media.SubTitle

year Number System.Media.Year

publisher String System.Media.Publisher

rating Number System.Rating

width Number in pixels System.Video.FrameWidth

417

http://msdn.microsoft.com/en-us/library/windows/desktop/ff521691(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff521709(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff521702(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/bb760564.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/bb760564.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff521738(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff521702(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff521691(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff521709(v=vs.85).aspx

height Number in pixels System.Video.FrameHeight

orientation Windows.Storage.FileProperties.-
VideoOrientation containing normal,

rotate90, rotate180, rotate270

System.Photo.Orientation

duration Number (in 100ns units, i.e. 1/10th milliseconds) System.Media.Duration

bitrate Number (in bits/second) System.Video.TotalBitrate,

System.Video.EncodingBitrate

directors String vector System.Video.Director

producers String vector System.Media.Producer

writers String vector System.Media.Writer

keywords String vector System.Keywords

latitude Double (see below) System.GPS.LatitudeDecimal,

or combination of System.GPS.Latitude,

System.GPS.LatitudeDenominator,

System.GPS.LatitudeNumerator, and

System.GPS.LatitudeRef

longitude Double (see below) System.GPS.LongitudeDecimal,

or combination of System.GPS.Longitude,

System.GPS.LongitudeDenominator,

System.GPS.LongitudeNumerator, and

System.GPS.LongitudeRef

MusicProperties from StorageFile.properties.getMusicPropertiesAsync

Additional properties System.Music, System.Media

Property DataType Applicable Windows Property

title String System.Title, System.Music.AlbumTitle

subtitle String System.Media.SubTitle

trackNumber Number System.Music.TrackNumber

year Number System.Media.Year

publisher String System.Media.Publisher

artist String System.Music.Artist, System.Music.DisplayArtist

albumArtist String System.Music.DisplayArtist (read),

System.Music.AlbumArtist (write)

genre String vector System.Music.Genre

composers String vector System.Music.Composer

conductors String vector System.Music.Conductor

rating Number (1-99 with 0 meaning “no rating”) System.Rating

duration Number (in 100ns units, i.e. 1/10th milliseconds) System.Media.Duration

bitrate Number (in bits/second) System.Video.TotalBitrate,

System.Video.EncodingBitrate

producers String vector System.Media.Producer

writers String vector System.Media.Writer

DocumentProperties from StorageFile.properties.getDocumentPropertiesAsync

Additional properties System

Property DataType Applicable Windows Property

title String System.Title

Author String vector System.Author

keywords String vector System.Keywords

418

http://msdn.microsoft.com/en-us/library/windows/apps/bb760564.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/bb760564.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff521705(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff521702(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff521735(v=vs.85).aspx

Comments String System.Comment

Two notes about all this. First, the string vectors are, as we’ve seen before, instances of IVector that

provide manipulation methods like append, insertAt, removeAt, and so forth. In JavaScript you can

access members of the vector like an array with []’s; just remember that the available methods are

more specific.

Second, the latitude and longitude properties for images and video are double types but contain

degrees, minutes, seconds, and a directional reference. The Simple Imaging sample (in default.js)

contains a helper function to extract the components of these values and convert them into a string:

"convertLatLongToString": function (latLong, isLatitude) {

 var reference;

 if (isLatitude) {

 reference = (latLong >= 0) ? "N" : "S";

 } else {

 reference = (latLong >= 0) ? "E" : "W";

 }

 latLong = Math.abs(latLong);

 var degrees = Math.floor(latLong);

 var minutes = Math.floor((latLong - degrees) * 60);

 var seconds = ((latLong - degrees - minutes / 60) * 3600).toFixed(2);

 return degrees + "°" + minutes + "\'" + seconds + "\"" + reference;

}

To summarize, the sign of the value indicates direction. A positive value for latitude means North,

negative means South; for longitude positive means East, negative means West. The whole number

portion of the value provides the degrees, and the fractional part contains the number of minutes

expressed in base 60. Multiplying this value by 60 is the whole minutes, with the remainder then

containing the seconds. It’s odd, but that’s the kind of raw data you get from a GPS that geolocation

APIs normally convert for you directly.

Media Properties in the Samples

A few of the samples in the Windows SDK show you how to work with some of the properties

described in the last section and how to work with those properties more generally. The Simple

Imaging sample, in Scenario 1 (js/scenario1.js), provides the most complete demonstration because you

can choose an image file and it will load and display various properties, as shown in Figure 10-4 (where

I’ve scrolled down to see all the properties). I can verify that the date, camera make/model, and

exposure information are all accurate.

419

http://msdn.microsoft.com/en-us/library/windows/apps/br206631.aspx
http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0
http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0
http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0

FIGURE 10-4 Image file properties in the Simple Imaging sample.

The openHandler method is what retrieves these properties from the file, specifically showing a call

to StorageFile.properties.getImagePropertiesAsync and the use of ImageProperties.retrieve-

PropertiesAsync for a couple of additional properties not already in ImageProperties. Then

getImagePropertiesForDisplay coalesces these into a single object used by the sample’s UI. Some

lines are omitted from the code shown here:

var ImageProperties = {};

function openHandler() {

 // Keep data in-scope across multiple asynchronous methods.

 var file = {};

 Helpers.getFileFromOpenPickerAsync().then(function (_file) {

 file = _file;

 return file.properties.getImagePropertiesAsync();

 }).then(function (imageProps) {

 ImageProperties = imageProps;

 var requests = [

 "System.Photo.ExposureTime", // In seconds

 "System.Photo.FNumber" // F-stop values defined by EXIF spec

];

 return ImageProperties.retrievePropertiesAsync(requests);

 }).done(function (retrievedProps) {

 // Format the properties into text to display in the UI.

 displayImageUI(file, getImagePropertiesForDisplay(retrievedProps));

 });

}

420

function getImagePropertiesForDisplay(retrievedProps) {

 // If the specified property doesn't exist, its value will be null.

 var orientationText = Helpers.getOrientationString(ImageProperties.orientation);

 var exposureText = retrievedProps.lookup("System.Photo.ExposureTime") ?

 retrievedProps.lookup("System.Photo.ExposureTime") * 1000 + " ms" : "";

 var fNumberText = retrievedProps.lookup("System.Photo.FNumber") ?

 retrievedProps.lookup("System.Photo.FNumber").toFixed(1) : "";

 // Omitted: Code to convert ImageProperties.latitude and ImageProperties.longitude to

 // degrees, minutes, seconds, and direction

 return {

 "title": ImageProperties.title,

 "keywords": ImageProperties.keywords, // array of strings

 "rating": ImageProperties.rating, // number

 "dateTaken": ImageProperties.dateTaken,

 "make": ImageProperties.cameraManufacturer,

 "model": ImageProperties.cameraModel,

 "orientation": orientationText,

 // Omitted: lat/long properties

 "exposure": exposureText,

 "fNumber": fNumberText

 };

}

Most of the displayImageUI function to which these properties are passed just copies the data into

various controls. It’s good to note again, though, that displaying the picture itself is easily

accomplished with our good friend, URL.createObjectURL:

function displayImageUI(file, propertyText) {

 id("outputImage").src = window.URL.createObjectURL(file, { oneTimeOnly: true });

For MusicProperties a small example can be found in the Playlist sample, as we already saw earlier

in “Playlists.” You might go back now and look at the code listed in that section, as you should be able

to understand what’s going on. And while the SDK lacks samples that use VideoProperties and

DocumentProperties, working with these follows the same pattern as shown above for

ImageProperties above, so it should be straightforward to write the necessary code.

Also take a look at the Configure Keys for Media sample, which works with all the different events of

the Windows.Media.MediaControl object and also sets properties like albumArt, trackName, and

artistName. The latter properties in particular supply information to the system volume flyout that

appears as follows (try changing your system volume to see it, or use one of the hardware media keys

on your device, if present):

421

http://code.msdn.microsoft.com/windowsapps/Playlist-sample-3d80daee
http://code.msdn.microsoft.com/windowsapps/Media-Buttons-ea57d8e2
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.mediacontrol.aspx

As for saving properties, the Simple Imaging sample delivers there as well, also in Scenario 1. As the

fields shown earlier in Figure 10-4 are editable, the sample provides an Apply butting that invokes the

applyHandler function below to write them back to the file:

function applyHandler() {

 ImageProperties.title = id("propertiesTitle").value;

 // Keywords are stored as an array of strings. Split the textarea text by newlines.

 ImageProperties.keywords.clear();

 if (id("propertiesKeywords").value !== "") {

 var keywordsArray = id("propertiesKeywords").value.split("\n");

 keywordsArray.forEach(function (keyword) {

 ImageProperties.keywords.append(keyword);

 });

 }

 var properties = new Windows.Foundation.Collections.PropertySet();

 // When writing the rating, use the "System.Rating" property key.

 // ImageProperties.rating does not handle setting the value to 0 (no stars/unrated).

 properties.insert("System.Rating", Helpers.convertStarsToSystemRating(

 id("propertiesRatingControl").winControl.userRating

));

 // Code omitted: convert discrete latitude/longitude values from the UI into the

 // appropriate forms needed for the properties, and do some validation; the end result

 // is to store these in the properties list

 properties.insert("System.GPS.LatitudeRef", latitudeRef);

 properties.insert("System.GPS.LongitudeRef", longitudeRef);

 properties.insert("System.GPS.LatitudeNumerator", latNum);

 properties.insert("System.GPS.LongitudeNumerator", longNum);

 properties.insert("System.GPS.LatitudeDenominator", latDen);

 properties.insert("System.GPS.LongitudeDenominator", longDen);

 // Write the properties array to the file

 ImageProperties.savePropertiesAsync(properties).done(function () {

 // ...

 }, function (error) {

 // Some error handling as some properties may not be supported by all image formats.

 });

}

A few noteworthy features of this code include the following:

 It separates keywords in the UI control and separately appends each to the keywords

422

property vector.

 It creates a new collection of properties of type

Windows.Foundation.Collections.PropertySet and uses its insert method to add

properties to the list. This property set is what’s expected by the savePropertiesAsync

method.

 The Helpers.convertStartsToSystemRating method (see default.js) converts between

1–5 stars, as used in the WinJS.UI.Rating control, to the System.Rating value that uses

a 1–99 range. The documentation for System.Rating specifically indicates this mapping.

In general, all the detailed information you want for any particular Windows property can be found

on the reference page for that property. Again start at the Windows Properties and drill down from

there.

Image Manipulation and Encoding
To do something more with an image than just loading and displaying it (where again you can apply

various CSS transforms for effect), you need to get to the actual pixels by means of a decoder. This

already happens under the covers when you assign a URL to an img.src., but to have direct access to

pixels means decoding manually. On the flip side, saving pixels back out to an image file means using

an encoder.

WinRT provides APIs for both in the Windows.Graphics.Imaging namespace, namely in the

BitmapDecoder, BitmapTransform, and BitmapEncoder classes. Loading, manipulating, and saving an

image file often involves these three classes in turn, though the BitmapTransform object is focused on

rotation and scaling so you won’t use it if you’re doing a different manipulation.

One demonstration of this API can be found in Scenario 2 of the Simple Imaging sample. I’ll leave it

to you to look at the code directly, however, because it gets fairly involved—up to 11 chained promises

to save a file! It also does all decoding, manipulation, and encoding within a single function such as

saveHandler (scenario2.js). Here’s the process it follows:

 Open a file with StorageFile.openAsync, which provides a stream.

 Pass that stream to the static method BitmapDecoder.createAsync which provides a

specific instance of BitmapDecoder for the stream.

 Pass that decoder to the static method BitmapEncoder.createForTranscodingAsync,

which provides a specific BitmapEncoder instance. This encoder is created with an

InMemoryRandomAccessStream.

 Set properties in the encoder’s bitmapTransform property (a BitmapTransform object)

to set the scaling and rotation. This creates the transformed graphic in the in-memory

stream.

 Create a property set (Windows.Graphics.Imaging.BitmapPropertySet) that includes

423

http://msdn.microsoft.com/en-us/library/bb787554(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd561977(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.imaging.aspx
http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0

System.Photo.Orientation and use the encoder’s

bitmapProperties.setPropertiesAsync to save it.

 Copy the in-memory stream to the output file stream by using

Windows.Storage.Stream.RandomAccessStream.copyAsync.

As comprehensive as this scenario is, it’s helpful to look at different stages of the process separately,

for which purpose we have the ImageManipulation example in this chapter’s companion content. This

lets you pick and load an image, convert it to grayscale, and save that converted image to a new file. Its

output is shown in Figure 10-5. It also gives us an opportunity to see how we can send decoded image

data to an HTML canvas element and save that canvas’s contents to a file.

FIGURE 10-5 Output of the ImageManipulation sample in the chapter’s companion content.

The handler for the Load Image button (loadImage in default.js) provides the initial display. It lets

you select an image with the file picker, displays the full-size image in an img element with

URL.createObjectURL, calls StorageFile.properties.getImagePropertiesAsync to retrieve the

title and dateTaken properties, and uses StorageFile.getThumbnailAsync to provide the thumbnail

at the top. We’ve seen all of these APIs in action already.

When we click Grayscale we enter the setGrayscale handler where the interesting work happens.

We call StorageFile.openReadAsync to get a stream, call BitmapDecoder.createAsync with that to

obtain a decoder, cache some details from the decoder in a local object (encoding), and call

BitmapDecoder.getPixelDataAsync and copy those pixels to a canvas (and only three chained async

operations here!):

var Imaging = Windows.Graphics.Imaging; //Shortcut

var imageFile; //Saved from the file picker

424

var decoder; //Saved from BitmapDecoder.createAsync

var encoding = {}; //To cache some details from the decoder

function setGrayscale() {

 //Decode the image file into pixel data for a canvas

 //Get an input stream for the file (StorageFile object saved from opening)

 imageFile.openReadAsync().then(function (stream) {

 //Create a decoder using static createAsync method and the file stream

 return Imaging.BitmapDecoder.createAsync(stream);

 }).then(function (decoderArg) {

 decoder = decoderArg;

 //Configure the decoder if desired. Default is BitmapPixelFormat.rgba8 and

 //BitmapAlphaMode.ignore. You can also use the parameterized version of getPixelDataAsync

 //to control transform, ExifOrientationMode, and ColorManagementMode if needed.

 //Cache these settings for encoding later

 encoding.dpiX = decoder.dpiX;

 encoding.dpiY = decoder.dpiY;

 encoding.pixelFormat = decoder.bitmapPixelFormat;

 encoding.alphaMode = decoder.bitmapAlphaMode;

 encoding.width = decoder.pixelWidth;

 encoding.height = decoder.pixelHeight;

 return decoder.getPixelDataAsync();

 }).done(function (pixelProvider) {

 //detachPixelData gets the actual bits (array can't be returned from an async operation)

 copyGrayscaleToCanvas(pixelProvider.detachPixelData(),

 decoder.pixelWidth, decoder.pixelHeight);

 });

}

The decoder’s getPixelDataAsync method comes in two forms. The simple form, shown here,

decodes using defaults. The full-control version lets you specify other parameters, as explained in the

code comments above. A common use of this is doing a transform using a

Windows.Graphics.Imaging.BitmapTransform object (as mentioned before), which accommodates

scaling (with different interpolation modes), rotation (90-degree increments), cropping, and flipping.

Either way, what you get back from the getPixelDataAsync is not the actual pixel array, because of

a limitation in the WinRT language projection mechanism whereby an asynchronous operation cannot

return an array. Instead, the operation returns a PixelDataProvider object whose singular

super-exciting synchronous method called detachPixelData gives you the array you want. (And that

method can be called only once and will fail on subsequent calls, hence the “detach” name.) In the end,

though, what we have is exactly the data we need to manipulate the pixels and display the result on a

canvas, as the copyGrayscaleToCanvas function demonstrates. You can, of course, replace this kind of

function with any other manipulation routine:

function copyGrayscaleToCanvas(pixels, width, height) {

 //Set up the canvas context and get its pixel array

 var canvas = document.getElementById("canvas1");

425

http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.imaging.bitmapdecoder.getpixeldataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.imaging.pixeldataprovider.aspx

 canvas.width = width;

 canvas.height = height;

 var ctx = canvas.getContext("2d");

 //Loop through and copy pixel values into the canvas after converting to grayscale

 var imgData = ctx.createImageData(canvas.width, canvas.height);

 var colorOffset = { red: 0, green: 1, blue: 2, alpha: 3 };

 var r, g, b, gray;

 for (var i = 0; i < pixels.length; i += 4) {

 r = pixels[i + colorOffset.red];

 g = pixels[i + colorOffset.green];

 b = pixels[i + colorOffset.blue];

 //Assign each rgb value to brightness for

 gray = Math.floor(.3 * r + .55 * g + .11 * b);

 imgData.data[i + colorOffset.red] = gray;

 imgData.data[i + colorOffset.green] = gray;

 imgData.data[i + colorOffset.blue] = gray;

 imgData.data[i + colorOffset.alpha] = pixels[i + colorOffset.alpha];

 }

 //Show it on the canvas

 ctx.putImageData(imgData, 0, 0);

 //Enable save button

 document.getElementById("btnSave").disabled = false;

}

This is a great place to point out that JavaScript isn’t necessarily the best language for working over

a pile of pixels like this. (The example program could really use a progress indicator!) Such routines are

best implemented as a WinRT component in a language like C++ and made callable by JavaScript. In

fact, we’ll take the opportunity to do exactly this in Chapter 16, “WinRT Components.”

Saving this canvas data to a file then happens in the saveGrayscale function, where we use the file

picker to get a StorageFile, open a stream, acquire the canvas pixel data, and hand it off to a

BitmapEncoder:

function saveGrayscale() {

 var picker = new Windows.Storage.Pickers.FileSavePicker();

 picker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.picturesLibrary;

 picker.suggestedFileName = imageFile.name + " - grayscale";

 picker.fileTypeChoices.insert("PNG file", [".png"]);

 var imgData, fileStream = null;

 picker.pickSaveFileAsync().then(function (file) {

 if (file) {

 return file.openAsync(Windows.Storage.FileAccessMode.readWrite);

 } else {

 return WinJS.Promise.wrapError("No file selected");

 }

426

 }).then(function (stream) {

 fileStream = stream;

 var canvas = document.getElementById("canvas1");

 var ctx = canvas.getContext("2d");

 imgData = ctx.getImageData(0, 0, canvas.width, canvas.height);

 return Imaging.BitmapEncoder.createAsync(Imaging.BitmapEncoder.pngEncoderId, stream);

 }).then(function (encoder) {

 //Set the pixel data--assume "encoding" object has options from elsewhere.

 //Conversion from canvas data to Uint8Array is necessary because the array type

 //from the canvas doesn't match what WinRT needs here.

 encoder.setPixelData(encoding.pixelFormat, encoding.alphaMode,

 encoding.width, encoding.height, encoding.dpiX, encoding.dpiY,

 new Uint8Array(imgData.data));

 //Go do the encoding

 return encoder.flushAsync();

 }).done(function () {

 fileStream.close();

 }, function () {

 //Empty error handler (do nothing if the user canceled the picker)

 });

}

Note how the BitmapEncoder takes a codec identifier in its first parameter. We’re using

pngEncoderId, which is, as you can see, defined as a static property of the

Windows.Graphics.Imaging.BitmapEncoder class; other values are bmpEncoderId, gifEncoderId,

jpegEncoderId, jpegXREncoderId, and tiffEncoderId. These are the formats supported by the API.

You can set additional properties of the BitmapEncoder before setting pixel data, such as its

BitmapTransform, which will then be applied during encoding.

One gotcha to be aware of here is that the pixel array obtained from a canvas element (a DOM

CanvasPixelArray) is not directly compatible with the WinRT byte array required by the encoder. This

is the reason for the new Uint8Array call down there in the last parameter.

Transcoding and Custom Image Formats

In the previous section we mostly saw the use of a BitmapEncoder created with that class’s static

createAsync method to write a new file. That’s all well and good, but you might want to know about a

few of the encoder’s other capabilities.

First is the BitmapEncoder.createForTranscodingAsync method that was mentioned briefly in the

context of the Simple Imaging sample. This specifically creates a new encoder that is initialized from an

existing BitmapDecoder. This is primarily used to manipulate some aspects of the source image file

while leaving the rest of the data intact. To be more specific, you can first change those aspects that

are expressed through the encoder’s setPixelData method: the pixel format (rgba8, rgba16, and

bgra8, see BitmapPixelFormat), the alpha mode (premultiplied, straight, or ignore, see

BitmapAlphaMode), the image dimensions, the image DPI, and, of course, the pixel data itself. Beyond

that, you can change other properties through the encoder’s bitmapProperties.setPropertiesAsync

427

http://msdn.microsoft.com/en-us/library/windows/apps/hh465731.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.imaging.bitmapencoder.createfortranscodingasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.imaging.bitmappixelformat.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.imaging.bitmapalphamode.aspx

method. In fact, if all you need to do is change a few properties and you don’t want to affect the pixel

data, you can use BitmapEncoder.createForInPlacePropertyEncodingAsync instead (how’s that for

a method name!). This encoder allows calls to only bitmapProperties.setPropertiesAsync,

bitmapProperties.getPropertiesAsync, and flushAsync, and since it can assume that the

underlying data in the file will remain unchanged, it executes much faster than its more flexible

counterparts and has less memory overhead.

An encoder from createForTranscodingAsync does not accommodate a change of image file

format (e.g., JPEG to PNG); for that you need to use createAsync wherein you can specify the specific

kind of encoding. As we’ve already seen, the first argument to createAsync is a codec identifier, for

which you normally pass one of the static properties on Windows.Graphics.Imaging.BitmapEncoder.

What I haven’t mentioned yet is that you can also specify custom codecs in this first parameter and

that the createAsync call also supports an optional third argument in which you can provide options

for the particular codec in question. However, there are complications and restrictions here.

Let me address options first. You’ll find that the present documentation for the BitmapEncoder

codec values (like pngEncoderId) lacks any details about available options. For that you need to

instead refer to the docs for the Windows Imaging Component (WIC), specifically the Native WIC

Codecs that are what the WinRT is surfacing to WinRT apps. If you go into the page for a specific

codec, you’ll then see a section on “Encoder Options” that tells you what you can use. For example, the

JPEG codec supports properties like ImageQuality (a value between 0.0 and 1.0), as well as built-in

rotations. The PNG codec supports properties like FilterOption for various compression

optimizations.

To provide these properties, you need to create a new BitmapPropertySet and insert an entry in

that set for each desired options. If, for example, you have a variable named quality that you want to

apply to a JPEG encoding, you’d create the encoder like this:

var options = new Windows.Graphics.Imaging.BitmapPropertySet();

options.insert("ImageQuality", quality);

var encoderPromise = Imaging.BitmapEncoder.createAsync(Imaging.BitmapEncoder.jpegEncoderId,

 stream, options);

You use the same BitmapPropertySet for any properties you might pass to an encoder’s bitmap-

Properties.setPropertiesAsync call. Here’s we’re just using the same mechanism for encoder

options.

As for custom codecs, this simply means that the first argument to BitmapEncoder.createAsync (as

well as BitmapDecoder.createAsync) is the GUID (a class identifier or CLSID) for that codec, the

implementation of which must be provided by a DLL. Details on how to write one of these is provided

in How to Write a WIC-Enabled Codec. The catch is that including custom image codecs in your

package is not presently supported. If the codec is already on the system (that is, installed via the

desktop), it will work. However, the Windows Store policies do not allow WinRT apps that are

dependent on other apps, so it’s unlikely that you can even ship such an app unless it’s preinstalled on

some specific OEM device where the DLL is part of the system image. (An app written in C++ can do

428

http://msdn.microsoft.com/en-us/library/windows/apps/windows.graphics.imaging.bitmapencoder.createforinplacepropertyencodingasync.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/gg430027(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/gg430027(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/gg430026(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/gg430028(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee719883(v=vs.85).aspx

more here, but that’s well beyond the scope of this book.)

In short, for WinRT apps written in JavaScript and HTML, you’re really limited, for all practical

purposes, to image formats that are inherently supported in the system.

Do note that these restrictions do not exist for custom audio and video codecs. The Media

extensions sample shows how to do this with a custom video codec, as we’ll see in the next section.

Manipulating Audio and Video
As with images, if all we want to do is load the contents of a StorageFile into an audio or video

element, we can just pass that StorageFile to URL.createObjectUrl and assign the result to a src

attribute. Similarly, if we want to get at the raw data, we can just use the StorageFile.openAsync or

openReadAsync methods to obtain a file stream.

To be honest, opening the file is probably the last thing you’d ever want to do in JavaScript with raw

audio or video, if even that. While chewing on an image is a marginally acceptable process in the

JavaScript environment, churning on audio and especially video is really best done in a highly

performant C++ DLL. In fact, many third-party, platform-neutral C/C++ libraries for such

manipulations (that you should be able to directly incorporate into such a DLL) are readily available,

and in this case you might as well just let the DLL open the file itself!

That said, WinRT does provide for transcoding (converting) between different media formats and

provides an extensibility model for custom codecs, effects, and scheme handlers. In fact, we’ve already

seen how to apply custom video effects through the Media extensions sample, and the same DLLs can

also be used within an encoding process, where all that the JavaScript code really does is glue the right

components together (which it’s very good at doing). Let’s see how this works with transcoding video

first and then with custom codecs.

Transcoding

Transcoding both audio and video is accomplished through the Windows.Media.Transcoding.-

MediaTranscoder class, which supports output formats of mp3 and wma for audio, and mp4, wmv, and

m4a for video. The transcoding process also allows you to apply effects and to trim start and end times.

Transcoding happens either from one StorageFile to another or one RandomAccessStream to

another, and in each case happens according to a MediaEncodingProfile. To set up a transcoding

operation you call the MediaTranscoder prepareFileTranscodeAsync or

prepareStreamTranscodeAsync method, which returns back a PrepareTranscodeResult object. This

represents the operation that’s ready to go, but it won’t happen until you call that results

transcodeAsync method. In JavaScript, each result is a promise, allowing you to provide completed

and progress handlers for a single operation but also allowing you to combine operations with

WinJS.Promise.join. That is, this specific control over starting a transcoding operation allows them to

be set up and started later, which is useful for batch processing and doing automatic uploads to a

service like YouTube while you’re sleeping! (And at times like these I’ve actually pulled ice packs from

429

http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.transcoding.mediatranscoder.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.transcoding.mediatranscoder.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.mediaproperties.mediaencodingprofile.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.transcoding.mediatranscoder.preparefiletranscodeasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.transcoding.mediatranscoder.preparestreamtranscodeasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.transcoding.preparetranscoderesult.aspx

my freezer and placed them under my laptop as a poor-man’s cooling system….)

The Transcoding Media sample provides us with a couple of transcoding scenarios. In Scenario 1

(js/presets.js) we can pick a video file, pick a target format, select a transcoding profile, and turn the

machine loose to do the job (with progress being reported), as shown in Figure 10-6.

FIGURE 10-6 The Transcoding Media sample cranking away on a video of my then two-year-old son discovering

the joys of a tape measure.

The code that’s executed when you press the Transcode button is as follows (some bits omitted; this

sample happens to use nested promises, which again isn’t recommended for proper error handling

unless you want, as this code would show, to eat any exceptions that occur prior to the

transcodeAsync call):

function onTranscode() {

 // Create transcode object.

 var transcoder = null;

 transcoder = new Windows.Media.Transcoding.MediaTranscoder();

 // Get transcode profile.

 getPresetProfile(id("profileSelect"));

 // Create output file and transcode.

 var videoLib = Windows.Storage.KnownFolders.videosLibrary;

 var createFileOp = videoLib.createFileAsync(g_outputFileName,

 Windows.Storage.CreationCollisionOption.generateUniqueName);

 createFileOp.done(function (ofile) {

 g_outputFile = ofile;

 g_transcodeOp = null;

 var prepareOp = transcoder.prepareFileTranscodeAsync(g_inputFile, g_outputFile, g_profile);

430

http://code.msdn.microsoft.com/windowsapps/Media-Transcode-Sample-f7ba5269

 prepareOp.done(function (result) {

 if (result.canTranscode) {

 g_transcodeOp = result.transcodeAsync();

 g_transcodeOp.done(transcodeComplete, transcoderErrorHandler, transcodeProgress);

 } else {

 transcodeFailure(result.failureReason);

 }

 }); // prepareOp.done

 id("cancel").disabled = false;

 }); // createFileOp.done

}

The getPresetProfile method retrieves the appropriate profile object according to the option

selected in the app. For the selections shown in Figure 10-6 (WMV and WVGA), we’d use these parts of

that function:

function getPresetProfile(profileSelect) {

 g_profile = null;

 var mediaProperties = Windows.Media.MediaProperties;

 var videoEncodingProfile;

 switch (profileSelect.selectedIndex) {

 // other cases omitted

 case 2:

 videoEncodingProfile = mediaProperties.VideoEncodingQuality.wvga;

 break;

 }

 if (g_useMp4) {

 g_profile = mediaProperties.MediaEncodingProfile.createMp4(videoEncodingProfile);

 } else {

 g_profile = mediaProperties.MediaEncodingProfile.createWmv(videoEncodingProfile);

 }

}

In Scenario 2, the sample always uses the WVGA encoding but allows you to set specific values for

the video dimensions, the frame rate, the audio and video bitrates, audio channels, and audio

sampling. It applies these settings in getCustomProfile (js/custom.js) simply by configuring the profile

properties after the profile is created:

function getCustomProfile() {

 if (g_useMp4) {

 g_profile = Windows.Media.MediaProperties.MediaEncodingProfile.createMp4(

 Windows.Media.MediaProperties.VideoEncodingQuality.wvga);

 } else {

 g_profile = Windows.Media.MediaProperties.MediaEncodingProfile.createWmv(

 Windows.Media.MediaProperties.VideoEncodingQuality.wvga);

 }

 // Pull configuration values from the UI controls

 g_profile.audio.bitsPerSample = id("AudioBPS").value;

 g_profile.audio.channelCount = id("AudioCC").value;

 g_profile.audio.bitrate = id("AudioBR").value;

431

 g_profile.audio.sampleRate = id("AudioSR").value;

 g_profile.video.width = id("VideoW").value;

 g_profile.video.height = id("VideoH").value;

 g_profile.video.bitrate = id("VideoBR").value;

 g_profile.video.frameRate.numerator = id("VideoFR").value;

 g_profile.video.frameRate.denominator = 1;

}

And to finish off, Scenario 3 is like Scenario 1, but it lets you set start and end times that are then

saved in the transcoder’s trimStartTime and trimStopTime properties (see js/trim.js):

transcoder = new Windows.Media.Transcoding.MediaTranscoder();

transcoder.trimStartTime = g_start;

transcoder.trimStopTime = g_stop;

Through not shown in the sample, you can apply effects to a transcoding operation by using the

transcoder’s addAudioEffect and addVideoEffect methods.

Custom Decoders/Encoders and Scheme Handlers

Clearly, there are many more audio and video formats in the world than Windows can support in-box,

so an extensibility mechanism is provided in WinRT to allow for custom bytestream objects, custom

media sources, and custom codecs and effects. It’s important to note again that all such extensions are

available only to the app itself and are not available to other apps on the system. Furthermore,

Windows will always prefer in-box components over a custom one, which means don’t bother wasting

your time creating a new mp3 decoder or such since it will never actually be used!

As suggested earlier with custom image formats, this subject will certainly take you into some pretty

vast territory around the entire Windows Media Foundation (WMF) SDK. What’s in WinRT is really just a

wrapper, so knowledge of WMF is essential and not for the faint of heart!

Audio and video extensions are declared in the app manifest where you’ll need to edit the XML

directly. As seen in the Media extensions sample for all the DLLs in its overall solution, each declaration

looks like this:

<Extension Category="windows.activatableClass.inProcessServer">

 <InProcessServer>

 <Path>MPEG1Decoder.dll</Path>

 <ActivatableClass ActivatableClassId="MPEG1Decoder.MPEG1Decoder" ThreadingModel="both" />

 </InProcessServer>

</Extension>

The ActivatableClassId is how an extension is identified in when calling the WinRT APIs, which is

clearly mapped in the manifest to the specific DLL that needs to be loaded.

Depending, then, on the use of the extension, you might need to register them with WinRT through

the methods of Windows.Media.MediaExtensionManager: registerAudio[Decoder | Encoder],

registerByteStreamHandler (media sinks), registerSchemeHandler (media sources/file containers),

and registerVideo[Decoder | Encoder]. In Scenario 1 of the Media extensions sample

(LocalDecoder.js), we can see how to set up a custom decoder for video playback:

432

http://msdn.microsoft.com/en-us/library/ms694197.aspx
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.mediaextensionmanager.aspx

var page = WinJS.UI.Pages.define("/html/LocalDecoder.html", {

 extensions: null,

 MFVideoFormat_MPG1: { value: "{3147504d-0000-0010-8000-00aa00389b71}" },

 NULL_GUID: { value: "{00000000-0000-0000-0000-000000000000}" },

 ready: function (element, options) {

 if (!this.extensions) {

 // Add any initialization code here

 this.extensions = new Windows.Media.MediaExtensionManager();

 // Register custom ByteStreamHandler and custom decoder.

 this.extensions.registerByteStreamHandler("MPEG1Source.MPEG1ByteStreamHandler",

 ".mpg", null);

 this.extensions.registerVideoDecoder("MPEG1Decoder.MPEG1Decoder",

 this.MFVideoFormat_MPG1, this.NULL_GUID);

 }

 // ...

where the MPEG1Source.MPEG1ByteStreamHandler CLSID is implemented in one DLL (see the

MPEG1Source C++ project in the sample’s solution) and the MPEG1Decoder.MPEG1.Decoder CLSID is

implemented in another (the MPEG1Decoder C++ project).

Scenario 2, for its part, shows the use of a custom scheme handler, where the handler (in the

GeometricSource C++ project) generates video frames on the fly. Fascinating stuff, but again beyond

the scope of this book.

Effects, as we’ve seen, are quite simple to use once you have one implemented: just pass their ID to

methods like msInsertVideoEffect and msInsertAudioEffect on video and audio elements. Again,

you can also apply effects during the transcoding process in the MediaTranscoder class’s

addAudioEffect and addVideoEffect methods. The same is also true for media capture, as we’ll see

shortly.

Media Capture

There are times when we can really appreciate the work that people have done to protect individual

privacy, such as making sure I know when my computer’s camera is being used since I am often using it

in the late evening, sitting in bed, or in the early pre-shower mornings when I have, in the words of my

father-in-law, “pineapple head.”

And there are times when we want to turn on a camera or a microphone and record something: a

picture, a video, or audio. Of course, an app cannot know ahead of time what exact camera and

microphones might be on a system. A key step in capturing media, then, is determining which device

to use—something that the Windows.Media.Capture APIs provide for nicely, along with the process of

doing the capture itself into a file, a stream, or some other custom “sink” depending on how an app

wants to manipulate or process the capture.

Back in Chapter 2, “Quickstart,” we learned how to use the camera capture UI functionality in WinRT

433

to easily capture a photograph in the Here My Am! app. To quickly review, we only needed to declare

the webcam capability in the manifest and add a few lines of code:

function capturePhoto() {

 var that = this;

 var captureUI = new Windows.Media.Capture.CameraCaptureUI();

 //Indicate that we want to capture a PNG that's no bigger than our target element --

 //the UI will automatically show a crop box of this size

 captureUI.photoSettings.format = Windows.Media.Capture.CameraCaptureUIPhotoFormat.png;

 captureUI.photoSettings.croppedSizeInPixels =

 { width: this.clientWidth, height: this.clientHeight };

 captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)

 .done(function (capturedFile) {

 //Be sure to check validity of the item returned; could be null if the user canceled.

 if (capturedFile) {

 lastCapture = capturedFile; //Save for Share

 that.src = URL.createObjectURL(capturedFile, {oneTimeOnly: true});

 }

 }, function (error) {

 console.log("Unable to invoke capture UI.");

 });

}

The UI that Windows brings up through this API provides for cropping, retakes, and adjusting

camera settings. Another example of taking a photo can also be found in Scenario 1 of the

CameraCaptureUI Sample, along with an example of capturing video in Scenario 2. In this case

(js/capturevideo.js) we configure the capture UI object for a video format and indicate a video mode in

the call to captureFileAsync:

function captureVideo() {

 var dialog = new Windows.Media.Capture.CameraCaptureUI();

 dialog.videoSettings.format = Windows.Media.Capture.CameraCaptureUIVideoFormat.mp4;

 dialog.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.video).done(function (file) {

 if (file) {

 var videoBlobUrl = URL.createObjectURL(file, {oneTimeOnly: true});

 } else {

 //...

 }

 }, function (err) {

 //...

 });

}

It should be noted that the webcam capability in the manifest applies only to the image or video

side of camera capture. If you want to capture audio, be sure to also select the Microphone capability

on the Capabilities tab of the manifest editor.

If you look in the Windows.Media.Capture.CameraCaptureUI object, you’ll also see many other

434

http://code.msdn.microsoft.com/windowsapps/CameraCaptureUI-Sample-845a53ac

options you can configure. Its photoSettings property, a CameraCaptureUIPhotoCaptureSettings

object, lets you indicate cropping size and aspect ratio, format, and maximum resolution. Its

videoSettings property, a CameraCaptureUIVideoCaptureSettings object, lets you set the format,

set the maximum duration and resolution, and indicate whether the UI should allow for trimming. All

useful stuff! You can find discussions of some of these in the docs on Capturing or rendering audio,

video, and images, including coverage of managing calls on a Bluetooth device.

Flexible Capture with the MediaCapture Object
Of course, the default capture UI won’t necessarily suffice in every use case. For one, it always sends

output to a file, but if you’re writing a communications app, for example, you’d rather send captured

video to a stream or send it over a network without any files involved at all. You might also want to

preview a video before any capture actually happens. Furthermore, you may want to add effects during

the capture, apply rotation, and perhaps apply a custom encoding.

All of these capabilities are available through the Windows.Media.Capture.MediaCapture class:

Properties Description (classes are in the Windows.Media.Capture namespace unless

note)

audioController An AudioDeviceController that controls volume and provides the ability to

manage other arbitrary properties that affect the audio stream.

mediaCaptureSettings A MediaCaptureSettings that contains device IDs and mode settings, and lets you

set the source (audo, videoPreview, photo).

videoController A VideoDeviceController that controls picture properties (brightness, hue,

pan/tilt, zoom, etc.). provides adjustments for backlight and AC power frequency, and

provides the ability to manage other arbitrary properties that affect the video stream.

Events Description

failed Fired when an error occurs during capture.

recordLimitationExceeded Fired when the user tried to record video or audio past the allowable duration.

Methods Description

initializeAsync Initialize the MediaCapture object (with defaults or with a

MediaCaptureInitializationSettings object that contains the same stuff as

MediaCaptureSettings).

addEffectAsync Applies an effect.

clearEffectsAsync Clears all current effects.

capturePhotoToStorageFileAsync
capturePhotoToStreamAsync

Captures an image to a storage file or a random access stream. Both take an instance of

ImageEncodingProperties to control format (JPEG or PNG), type, dimensions, and

other arbitrary Windows Properties as described earlier in the section “Common File

Properties.”

getEncoderProperty
setEncoderProperty

Manages specific encoder properties.

startRecordToStorageFileAsync
startRecordToStreamAsync
stopRecordAsync

Starts and stops recording to a storage file or random access stream, a

MediaEncodingProfile that determines the audio/video format, along with bitrate,

quality, video dimensions, etc.

435

http://msdn.microsoft.com/en-us/library/windows/apps/hh465156.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465156.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.capture.mediacapture.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd561977(v=vs.85).aspx

getRecordRotation
setRecordRotation

For videos, these manage a VideoRotation value (90-degree increments) to apply to

the recording. These do not affect audio.

startRecordToCustomSinkAsync Starts recording into a custom sink that’s described either by an implementation of

Windows.Media.IMediaExtension or by an ID plus a property set of settings.

startPreviewAsync
startPreviewToCustomSinkAsync
stopPreviewAsync
getPreviewRotation
setPreviewRotation

Same as recording but works for previews. In this case, if you call

URL.createObjectURL and pass the MediaCapture object as the first parameter,

the result can be assigned to the src attribute of a video element and the preview

shows in that element when you call the video.play method.

getPreviewMirroring
setPreviewMirroring

Controls preview mirroring, which means to flip the preview horizontally; this accounts for

differences in camera direction which can be in the same direction as the user

(rear-mounted camera as on a tablet computer), or the opposite direction (camera

mounted on a monitor or built into a laptop display).

For a very simple demonstration of previewing video in a video element we can look at the

CameraOptionsUI sample in js/showoptionsui.js. When you tap the Start Preview button, it creates an

initializes a MediaCapture object as follows:

function initializeMediaCapture() {

 mediaCaptureMgr = new Windows.Media.Capture.MediaCapture();

 mediaCaptureMgr.initializeAsync().done(initializeComplete, initializeError);

}

where the initializeComplete handler calls into startPreview:

function startPreview() {

 document.getElementById("previewTag").src = URL.createObjectURL(mediaCaptureMgr);

 document.getElementById("previewTag").play();

 startPreviewButton.disabled = true;

 showSettingsButton.style.visibility = "visible";

 previewStarted = true;

}

The other little bit shown in this sample is invoking the Windows.Media.Capture.CameraOptionsUI,

which happens when you tap its Show Settings button; see Figure 10-7. This is just a system-provided

flyout with options that are relevant to the current media stream being captured:

function showSettings() {

 if (mediaCaptureMgr) {

 Windows.Media.Capture.CameraOptionsUI.show(mediaCaptureMgr);

 }

}

By the way, if you have trouble running a sample like this in the Visual Studio

simulator—specifically, you see exceptions when trying to turn on the camera—try running on the

local machine or a remote machine instead.

436

http://code.msdn.microsoft.com/windowsapps/CameraOptionsUI-Sample-44c06873

FIGURE 10-7 The Camera Options UI, as shown in the CameraOptionsUI sample (empty bottom is cropped).

More complex scenarios involving the MediaCapture class (and a few others) can be found now in

the Media capture using capture device sample, such as previewing and capturing video, changing

properties dynamically (Scenario 1), selecting a specific media device (Scenario 2), and recording just

audio (Scenario 3).

Starting with the latter (the simplest), here’s the core code to create and initialize the MediaCapture

object for an audio stream (see the streamingCaptureMode property in the initialization settings) that’s

directed to a file in the music library via startRecordToStorageFileAsync (some code omitted for

brevity):

var mediaCaptureMgr = null;

var captureInitSettings = null;

var encodingProfile = null;

var storageFile = null;

// This is called when the page is loaded

function initCaptureSettings() {

 captureInitSettings = new Windows.Media.Capture.MediaCaptureInitializationSettings();

 captureInitSettings.audioDeviceId = "";

 captureInitSettings.videoDeviceId = "";

 captureInitSettings.streamingCaptureMode = Windows.Media.Capture.StreamingCaptureMode.audio;

}

function startDevice() {

 mediaCaptureMgr = new Windows.Media.Capture.MediaCapture();

 mediaCaptureMgr.initializeAsync(captureInitSettings).done(function (result) {

 // ...

 });

}

function startRecord() {

 // ...

 // Start recording.

 Windows.Storage.KnownFolders.videosLibrary.createFileAsync("cameraCapture.m4a",

 Windows.Storage.CreationCollisionOption.generateUniqueName).done(function (newFile) {

 storageFile = newFile;

437

http://code.msdn.microsoft.com/windowsapps/Media-Capture-Sample-adf87622

 encodingProfile = Windows.Media.MediaProperties.MediaEncodingProfile.createM4a(

 Windows.Media.MediaProperties.AudioEncodingQuality.auto);

 mediaCaptureMgr.startRecordToStorageFileAsync(encodingProfile, storageFile)

 .done(function (result) {

 // ...

 });

 });

}

function stopRecord() {

 mediaCaptureMgr.stopRecordAsync().done(function (result) {

 displayStatus("Record Stopped. File " + storageFile.path + " ");

 // Playback the recorded audio

 var audio = id("capturePlayback" + scenarioId);

 audio.src = URL.createObjectURL(storageFile, { oneTimeOnly: true });

 audio.play();

 });

}

Scenario 1 looks very much the same for a video stream as well as photo capture, with results shown

in Figure 10-8. Its initialization settings included these properties (see js/BasicCapture.js within

initCaptureSettings):

captureInitSettings.photoCaptureSource = Windows.Media.Capture.PhotoCaptureSource.videoPreview;

captureInitSettings.streamingCaptureMode = Windows.Media.Capture.StreamingCaptureMode.audioAndVideo;

FIGURE 10-8 Previewing and recording video with the default device in the Media capture sample, Scenario 1. (The

output is cropped because I needed to run the app using the Local Machine option in Visual Studio, and I didn’t

think you needed to see a 1920x1200 screenshot with lots of whitespace!).

Notice the Contrast and Brightness controls in Figure 10-8. Changing these will change the preview

video, of course, but will also change the recorded video. The sample does this through the

438

MediaCapture.videoDeviceController object’s contrast and brightness properties, showing that

these (and any others in the controller) can be adjusted dynamically. Refer to the getCameraSettings

function in BasicCapture.js that basically wires the slider change events into a generic anonymous

function to update the desired property.

Selecting a Media Capture Device
Scenario 2 now does more or less what Scenario 1 does, but it allows you to select the specific input

device. Until now, everything we’ve done has simply used the default device, but you’re not limited to

that, of course. You can use the Windows.Devices.Enumeration API to retrieve a list of devices within

a particular class. In js/AdvancedCapture.js we can see how the sample does this for the videoCapture

class:

function enumerateCameras() {

 var cameraSelect = id("cameraSelect");

 deviceList = null;

 deviceList = new Array();

 while (cameraSelect.length > 0) {

 cameraSelect.remove(0);

 }

 //Enumerate webcams and add them to the list

 var deviceInfo = Windows.Devices.Enumeration.DeviceInformation;

 deviceInfo.findAllAsync(Windows.Devices.Enumeration.DeviceClass.videoCapture)

 .done(function (devices) {

 // Add the devices to deviceList

 if (devices.length > 0) {

 for (var i = 0; i < devices.length; i++) {

 deviceList.push(devices[i]);

 cameraSelect.add(new Option(deviceList[i].name), i);

 }

 //Select the first webcam

 cameraSelect.selectedIndex = 0;

 initCaptureSettings();

 } else {

 // disable buttons.

 }

 }, errorHandler);

}

The selected device’s ID is then copied within initCaptureSettings to the MediaCapture-

InitializationSetting.videoDeviceId property:

var selectedIndex = id("cameraSelect").selectedIndex;

captureInitSettings.videoDeviceId = deviceList[selectedIndex].id;

By the way, you can retrieve the default device IDs at any time through the methods of the

Windows.Media.Devices.MediaDevice object and listen to its events for changes in the default

devices.

The other bit that Scenario 2 demonstrates is using the MediaCapture.addEffectAsync with a

439

http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.enumeration.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br226802.aspx

grayscale effect, shown in Figure 10-9, that’s implemented in a DLL (the GrayscaleTransform project in

the sample’s solution). This works exactly as it did with transcoding, and you can refer to the

addRemoveEffect and addEffectToImageStream functions in AdvancedCapture.js for the details. You’ll

notice there that these functions do a number of checks using the

MediaCaptureSettings.videoDeviceCharacteristic value to make sure that the effect is added in

the right place.

FIGURE 10-9 Scenario 2 of the Media capture sample in which one can select a specific device and apply an effect.

(The output here is again cropped from a larger screen shot.) Were you also paying attention enough to notice that

I switched guitars?

Streaming Media and PlayTo

To say that streaming media is popular is certainly a gross understatement. As mentioned in this

chapter’s introduction, Netflix alone consumes for a large percentage of today’s Internet bandwidth

(including that of my own home). YouTube certainly does its part as well—so your app might as well

contribute to the cause!

Streaming media from a server to your app is easily the most common case, and it happens

automatically when you set an audio or video src attribute to a remote URL. To improve on this,

Microsoft also has a Smooth Streaming SDK for Windows 8 Apps (in beta at the time of writing) that

helps you build media apps with a number of rich features including live playback and PlayReady

content protection. I won’t be covering that SDK in this chapter, but I wanted to make sure you were

aware of it.

What we’ll focus on here, in the few pages we have left—before my editors at Microsoft Press pull

440

http://visualstudiogallery.msdn.microsoft.com/04423d13-3b3e-4741-a01c-1ae29e84fea6?SRC=Home

the plug on this chapter—are considerations for digital rights management (DRM) and streaming not

from a network but to a network (for example, audio/video capture in a communications app, as well

as streaming media from an app to a PlayTo device).

Streaming from a Server and Digital Rights Management (DRM)
Again, streaming media from a server is what you already do whenever you’re using an audio or video

element with a remote URL. The details just happen for you. Indeed, much of what a great media client

app does is talking to web services, retrieving metadata and the catalog, helping the user navigate all

of that information, and ultimately getting to a URL that can be dropped in the src attribute of a

video or audio element. Then, once the app receives the canplay event, you can call the element’s

play method to get everything going.

Of course, media is often protected with DRM, otherwise the content on paid services wouldn’t be

generating much income for the owners of those rights! So there needs to be a mechanism to acquire

and verify rights somewhere between setting the element’s src and receiving canplay. Fortunately,

there’s a simple means to do exactly that:

 Before setting the src attribute, create an instance of

Windows.Media.Protection.MediaProtectionManager and configure its properties.

 Listen to this object’s serviceRequested event, the handler for which performs the

appropriate rights checks and sets a completed flag when all is well. (Two other events,

just to mention them, are componentloadfailed and rebootneeded.)

 Assign the protection manager to the audio/video element with the

msSetMediaProtectionManager extension method.

 Set the src attribute. This will trigger the serviceRequested event to start the DRM

process which will prevent canplay until DRM checks are completed successfully.

 In the event of an error, the media element’s error event will be fired. The element’s

error property will then contain an msExtendedCode with more details.

You can refer to How to use pluggable DRM and How to handle DRM errors for additional details,

but here’s a minimal and hypothetical example of all this in code:

var video1 = document.getElementById("video1");

video1.addEventListener('error', function () {

 var error = video1.error.msExtendedCode;

 //...

}, false);

video1.addEventListener('canplay', function () {

 video1.play();

}, false);

var cpm = new Windows.Media.Protection.MediaProtectionManager();

441

http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.protection.mediaprotectionmanager.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465953.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452779.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452767.aspx

cpm.addEventListener('servicerequested', enableContent, false);

video1.msSetContentProtectionManager(cpm);

video1.src = "http://some.content.server.url/protected.wmv";

function enableContent(e) {

 if (typeof (e.request) != 'undefined') {

 var req = e.request;

 var system = req.protectionSystem;

 var type = req.type;

 //Take necessary actions based on the system and type

 }

 if (typeof (e.completion) != 'undefined') {

 //Requested action completed

 var comp = e.completion;

 comp.complete(true);

 }

}

How you specifically check for rights, of course, is particular to the service you’re drawing

from—and not something you’d want to publish in any case!

For a more complete demonstration of handling DRM, check out the Simple PlayReady sample,

which will require that you download and install the Microsoft PlayReady Client SDK. PlayReady, if you

aren’t familiar with it yet, is a license service that Microsoft provides so that you don’t have to create

one from scratch. The PlayReady client SDK, then, provides additional tools and framework support for

apps wanting to implement both online and offline media scenarios, such as progressive download,

download to own, rentals, and subscriptions. Plus, with the SDK you don’t need to submit your app for

DRM Conformance testing. In any case, here’s how the Simple PlayReady sample sets up its content

protection manager, just to give an idea of how the WinRT APIs are used with specific DRM service

identifiers:

mediaProtectionManager = new Windows.Media.Protection.MediaProtectionManager();

mediaProtectionManager.properties["Windows.Media.Protection.MediaProtectionSystemId"] =

 '{F4637010-03C3-42CD-B932-B48ADF3A6A54}'

var cpsystems = new Windows.Foundation.Collections.PropertySet();

cpsystems["{F4637010-03C3-42CD-B932-B48ADF3A6A54}"] =

 "Microsoft.Media.PlayReadyClient.PlayReadyWinRTTrustedInput";

mediaProtectionManager.properties["Windows.Media.Protection.MediaProtectionSystemIdMapping"] =

 cpsystems;

Streaming from App to Network
The next case to consider is when an app is the source of streaming media rather than the consumer,

which means that client apps elsewhere are acting in that capacity. In reality, in this scenario—audio or

video communications and conferencing—it’s usually the case that the app plays both roles, streaming

media to other clients and consuming media from them. This is the case with Windows Live Messenger,

Skype, and other such utilities, along with apps like games that include chat capabilities.

442

http://code.msdn.microsoft.com/windowsapps/Simple-PlayReady-sample-5c1aefaf
http://visualstudiogallery.msdn.microsoft.com/e02ccac7-f3eb-4b53-b11a-c657d5631483

Here’s how such apps generally work:

 Set up the necessary communication channels over the network, which could be a

peer-to-peer system or could involve a central service of some kind.

 Capture audio or video to a stream using the WinRT APIs we’ve seen (specifically

MediaCapture. startRecordToStreamAsync) or capturing to a custom sink.

 Do any additional processing to the stream data. Note, however, that effects are

plugged into the capture mechanism (MediaCapture.addEffectAsync) rather than

something you do in post-processing.

 Encode the stream for transmission however you need.

 Transmit the stream over the network channel.

 Receive transmissions from other connected apps.

 Decode transmitted streams and convert to a blob by using

MSApp.createBlobFromRandomAccessStream.

 Use URL.createObjectURL to hook an audio or video element to the stream.

To see such features in action, check out the Real-time communications sample that implements

video chat in Scenario 2 and demonstrates working with different latency modes in Scenario 1. The

latter two steps in the list above are also shown in the PlayToReceiver sample that is set up to receive a

media stream from another source.

PlayTo
The final case of streaming is centered on the PlayTo capabilities that were introduced in Windows 7.

Simply said, PlayTo is a means through which an app can connect local playback/display for audio,

video, and img elements to a remote device.

The details happen through the Windows.Media.PlayTo APIs along with the extension methods

added to media elements. If, for example, you want to specifically start a process of streaming to a

PlayTo device, invoking the selection UI directly, you’d do the following:

 Windows.Media.PlayTo.PlayToManager:

o getForCurrentView returns the object.

o showPlayToUI invokes the flyout UI where the user selects a receiver.

o sourceRequested event is fired when user selects a recevier.

 In sourceRequested

o Get PlayToSource object from audio, video, or img element (msPlayToSource property)

443

http://code.msdn.microsoft.com/Simple-Communication-Sample-eac73290
http://code.msdn.microsoft.com/windowsapps/PlayToReceiver-sample-607f00ed
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.playto.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.playto.playtomanager.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.playto.playtosource.aspx

and pass to e.setSource.

o Set PlayToSource.next property to the msPlayToSource of another element for continual

playing.

 Pick up ended event to stage additional media

Another approach, as demonstrated in the Media Play To sample, is to go ahead and play media

locally and then let the user choose a PlayTo device on the fly from the Devices charm. In this case you

don’t need to do anything because Windows will pick up the current playback element and direct it

accordingly. But the app can listen to the statechanged event of the element’s

msPlayToSource.connection object (a PlayToConnection) that will fire when the user selects a PlayTo

device and when other changes happen.

Generally speaking, PlayTo is primarily intended for streaming to a media receiver device that’s

probably connected to a TV or other large screen. This way you can select local content on a Windows

8 device and send it straight to that receiver. But it’s also possible to make a software receiver—that is,

an app that can receive streamed content from a PlayTo source. The PlayToReceiver sample does

exactly this, and when you run it on another device on your local network, it will show up in the

Devices charms as follows:

You can even run the app from your primarily machine using the remote debugging tools of Visual

Studio, allowing you to step through the code of both source and receiver apps at the same time!

(Another option is to run Windows Media Player on one machine and check its Stream > Allow Remote

Control of My Player menu option. This should make that machine appear in the PlayTo target list.)

To be a receiver, an app will generally want to declare some additional networking capabilities in

the manifest—namely, Internet (Client & Server) and Private Networks (Client & Server)—otherwise it

won’t see much action! It then creates an instance of Windows.Media.PlayTo.PlayToReceiver, as

shown in the PlayTo Receiver sample’s startPlayToReceiver function (js/audiovideoptr.js):

function startPlayToReceiver() {

 if (!g_receiver) {

 g_receiver = new Windows.Media.PlayTo.PlayToReceiver();

 }

444

http://code.msdn.microsoft.com/windowsapps/Media-PlayTo-Sample-fedcb0f9
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.playto.playtoconnection.aspx
http://code.msdn.microsoft.com/windowsapps/PlayToReceiver-sample-607f00ed

Next you’ll want to wire up handlers for the element that will play the media stream:

var dmrVideo = id("dmrVideo");

dmrVideo.addEventListener("volumechange", g_elementHandler.volumechange, false);

dmrVideo.addEventListener("ratechange", g_elementHandler.ratechange, false);

dmrVideo.addEventListener("loadedmetadata", g_elementHandler.loadedmetadata, false);

dmrVideo.addEventListener("durationchange", g_elementHandler.durationchange, false);

dmrVideo.addEventListener("seeking", g_elementHandler.seeking, false);

dmrVideo.addEventListener("seeked", g_elementHandler.seeked, false);

dmrVideo.addEventListener("playing", g_elementHandler.playing, false);

dmrVideo.addEventListener("pause", g_elementHandler.pause, false);

dmrVideo.addEventListener("ended", g_elementHandler.ended, false);

dmrVideo.addEventListener("error", g_elementHandler.error, false);

along with handlers for events that the receiver object will fire:

g_receiver.addEventListener("playrequested", g_receiverHandler.playrequested, false);

g_receiver.addEventListener("pauserequested", g_receiverHandler.pauserequested, false);

g_receiver.addEventListener("sourcechangerequested", g_receiverHandler.sourcechangerequested, false);

g_receiver.addEventListener("playbackratechangerequested", g_receiverHandler.playbackratechangerequested,

false);

g_receiver.addEventListener("currenttimechangerequested", g_receiverHandler.currenttimechangerequested,

false);

g_receiver.addEventListener("mutechangerequested", g_receiverHandler.mutedchangerequested, false);

g_receiver.addEventListener("volumechangerequested", g_receiverHandler.volumechangerequested, false);

g_receiver.addEventListener("timeupdaterequested", g_receiverHandler.timeupdaterequested, false);

g_receiver.addEventListeer("stoprequested", g_receiverHandler.stoprequested, false);

g_receiver.supportsVideo = true;

g_receiver.supportsAudio = true;

g_receiver.supportsImage = false;

g_receiver.friendlyName = 'SDK JS Sample PlayToReceiver';

The last line above, as you can tell from the earlier image, is the string that will show in the Devices

charm for this receiver once it’s made available on the network. This is done by calling startAsync:

// Advertise the receiver on the local network and start receiving commands

g_receiver.startAsync().then(function () {

 g_receiverStarted = true;

 // Prevent the screen from locking

 if (!g_displayRequest) {

 g_displayRequest = new Windows.System.Display.DisplayRequest();

 }

 g_displayRequest.requestActive();

});

Of all the receiver object’s events, the critical one is sourcechangerequested where

eventArgs.stream contains the media we want to play in whatever element we choose. This is easily

accomplished by creating a blob from the stream and then a URL from the blob that we can assign to

an element’s src attribute:

sourcechangerequested: function (eventIn) {

 if (!eventIn.stream) {

 id("dmrVideo").src = "";

445

 } else {

 var blob = MSApp.createBlobFromRandomAccessStream(eventIn.stream.contentType,

 eventIn.stream);

 id("dmrVideo").src = URL.createObjectURL(blob, {oneTimeOnly: true});

 }

}

All the other events, as you can imagine, are primarily for wiring together the source’s media

controls to the receiver such that pressing a pause button, switching tracks, or acting on the media in

some other way at the source will be reflected in the receiver. There may be a lot of events, but

handling them is quite simple as you can see in the sample.

What We Have Learned

 Creating media elements can be done in markup or code by using the standard img,

svg, canvas, audio, and video elements.

 The three graphics elements—img, svg, and canvas—can all produce essentially the

same output, only with different characteristics as to how they are generated and how

they scale. All of them can be styled with CSS, however.

 The Windows.System.Display.DisplayRequest object allows for disabling screen

savers and the lock screen during video playback (or any other appropriate scenario).

 Both the audio and video elements provide a number of extension APIs (properties,

methods, and events) for working with various platform-specific capabilities in Windows

8, such as horizontal mirroring, zooming, playback optimization, 3D video, low-latency

rendering, PlayTo, playback management of different audio types or categories, effects

(generally provided as DLLs in the appp package), and digital rights management.

 Background audio is supported for several categories given the necessary declarations

in the manifest and handlers for media control events (so the audio can be

appropriately paused and played).

 Through the WinRT APIs, apps can manage very rich metadata and properties for

media files, including thumbnails, album art, and properties specific to the media type,

including access to a very extensive list of Windows Properties.

 The WinRT APIs provide for decoding and encoding of media files and streams, through

which the media can be converted or properties changed. This includes support for

custom codecs.

 WinRT provides a rich API for media capture (photo, video, and audio), including a

built-in capture UI, along with the ability to provide your own and yet still easily

enumerate and access available devices.

446

http://msdn.microsoft.com/en-us/library/windows/desktop/dd561977(v=vs.85).aspx

 Streaming media is supported from a server (with and without digital rights

management, including PlayReady), between apps (inbound and outbound), and from

apps to PlayTo devices. An app can also be configured as a PlayTo receiver.

447

Chapter 11

Purposeful Animations

In the early 1990s, the wonderful world of multimedia first became prevalent on Windows PCs. Before

that time it was difficult for such machines to play audio and video, access compact discs (remember

those?), and otherwise provide the rich experience we take for granted today. The multimedia

experience was so new and exciting, and many people jumped in wholeheartedly, including the group

of support engineers at Microsoft who were specializing in this area. Though my team (specializing in

UI) sat more than 100 feet away from their area, we could clearly hear—for most of the day!—the

various chirps and bleeps emitting from their speakers, against the background of a soft Amazon basin

rainfall.

At that time too, many consumers of Windows were having fun attaching all kinds of crazy sounds

to every mouse click, window transition, email arrival, and every other system event they could think of.

Yet after a month or two of this sensual overload—not unlike being at a busy carnival—most people

started to remove quite a few of those sounds, if not disable them altogether. I, for one, eventually

turned off all my sounds. Simply said, I got tired of the extra noise.

Along these same lines, you may remember that when DVDs first appeared in their full glory, just

about every title had fancy menus with clever transitions. No more: most consumers, I think, got tired

of waiting for all this to happen and just want to get on with the business of watching the movie as

quickly as possible.

Today we’re reliving this same experience with fluid animations. Now that most systems have highly

responsive touch screens and GPUs capable of providing very smooth graphical transitions, it’s

tempting to use animations superfluously. However, unless the animations actually add meaning and

function to an app, consumers will likely tire of them like they did with DVD menus, especially if they

end up interfering with a workflow by making one constantly wait for the animations to finish! I’ll bet

that every reader of this book has, at least once, repeatedly hit the Menu button on a DVD remote to

no avail….

This is why WinRT app design speaks of purposeful animations: if there’s no real purpose behind an

animation, you should ask, “Why am I wanting to use this?” Take a moment, in fact, to use Windows 8

and some of the built-in apps to explore how animations are both used and not used. Notice how

many animations are specifically to track or otherwise give immediate feedback for touch interactions,

which purposefully help users know that their input is being registered by the system. Other

animations, such as when items are added or removed from a list, are intended to draw attention to

the change, soften its visual impact, and give it a sense of fluidity. In other cases, you may find apps

that perhaps overuse animations, simply using animations because they’re available or trying too hard

to emulate physical motion where it’s simply not necessary. In this way, excessive animations constitute

a kind of “chrome” with the same effect as other chrome: distracting the user from the content they

448

really care about. (If you feel tempted to add little effects that are like this, consider at least providing a

setting to turn them off.)

Let me put it another way. When thinking about animations, ask yourself, “What do they

communicate?” Animations are a form of communication, a kind of visual language. I would even

venture to say (as I am venturing now) that animations really only say one or a combination of three

things:

 “Thanks, I heard you,” as when something on the screen moves naturally in response to

a user gesture. Without this communication, the user might think that their gesture

didn’t register and will almost certainly poke at the app again.

 “Hello” and “Goodbye,” as when items appear or disappear from view, or transition one

to another. Without this communication, changes that happen to on-screen elements

can be as jarring as Bilbo Baggins slipping on the Ring of Power and instantly vanishing.

This is not to say that most consumers are incredulous hobbits, of course, but you get

the idea.

 “Hey, look at me!” as when something moves to only gain attention or look cute.

If I were to assign percentages to these categories to represent how often they would or should be

used, I’d probably put them at 80%, 15%, and 5%, respectively (although some animations will serve

multiple purposes). Put another way, the first bit of communication is really about listening and

responding, which is what an app should be doing most of the time. The second bit is about courtesy,

which is another good quality to express within reason—courtesy can, like handshakes, hugs, bows,

and salutes, be overused to the point of annoyance. The third bit, for its part, can be helpful when

there’s a real and sincere reason to raise your hand or offer a friendly wave, but otherwise can easily

become just another means of showing off.

There’s another good reason to be judicious about the use of animations and really make them

count: power consumption. No matter how it’s accomplished, via GPU or CPU, animation is an

expensive process. Every watt of juice in a consumer’s batteries should be directed toward fulfilling

their goals with their device rather than scattered to the wind. Again, this is why this chapter is called

“Purposeful Animations” and not just “Animations”!

In any case, you and your designers are the ultimate arbiters of how and when you’ll use

animations. In this uncommonly short chapter, then, we’ll first look at what’s provided for you in the

WinJS Animations Library, a collection of animations built on CSS that already embody the Windows 8

look and feel for many common operations. After that we’ll review the underlying CSS capabilities that

you can, of course, use directly. In fact, aside from games and other apps whose primary content

consists of animated objects, you can probably use CSS for most other animation needs. This is a good

idea because the CSS engine is very much optimized to take advantage of hardware acceleration,

something that isn’t true when doing frame-by-frame animations in JavaScript yourself. Nevertheless,

we’ll end this chapter on that latter subject, as there are some tips and tricks for doing it well within

WinRT apps.

449

Systemwide Enabling and Disabling of Animations

Before we go any further, there’s a setting buried deep inside the desktop Control Panel’s Ease of

Access Center that you need to know about because it affects how the WinJS Animations Library

behaves and should affect whether you do animations of your own. From the desktop, invoke the

Charms and select Control Panel. Then navigate to Ease of Access > Ease of Access Center > Make the

computer easier to see. Scroll down close to the bottom and you’ll see the item “Turn off all

unnecessary animations (when possible),” as shown in Figure 11-1.

FIGURE 11-1 A very important setting for animation in the desktop control panel.

The idea behind this check box is that for some users, animations are a real distraction that can

make the entire machine more difficult to use. For medical reasons too, some users might elect to

minimize on-screen movement just to keep the whole experience more calm. So when this option is

checked, the WinJS animations don’t actually do anything, and it’s recommended that apps also

disable many if not all of their own custom animations as well.

The Control Panel setting can be obtained through the Windows.UI.ViewManagement.UISettings

class in its animationsEnabled property:

var settings = new Windows.UI.ViewManagement.UISettings();

var enabled = settings.animationsEnabled;

You can also just call the WinJS.UI.isAnimationEnabled method that will return true or false

depending on this property. WinJS obviously uses this internally to manage its own animation

behavior.

WinJS also adds an enablement count that you can use to temporarily enable or disable animations

in conjunction with the animationsEnabled value. You change this count by calling

WinJS.UI.enableAnimations and WinJS.UI.disableAnimations, the effects of which are cumulative,

450

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.viewmanagement.uisettings.aspx

and the animationsEnabled property counts as 0 if the Control Panel option is checked and 1 if it’s

unchecked.

Thus, if the system setting is checked and you call WinJS.UI.enableAnimations, the WinJS

animations will execute. If the system setting is not checked and you call

WinJS.UI.disableAnimations, those animations will not execute.

When implementing your own animations either with CSS or with mechanisms like setInterval or

requestAnimationFrame, it’s a good idea to be sensitive to the animationsEnabled setting where

appropriate. I add this condition because if an animation is essential to the actual content of an app,

like a game, then it’s not appropriate to apply this setting. The same goes for animating something like

a clock within a clock app. It’s really about animations that add a fast-and-fluid effect to the content,

but it can be turned off without ill effect.

The WinJS Animations Library

When considering animations for your app, the first place you should turn is the Animations Library in

WinJS, found in the WinJS.UI.Animation namespace. Each animation is basically a function within this

namespace that you call when you want a certain kind of animation or transition to happen. The

benefit of using these is that they directly embody the Windows 8 look and feel and, in fact, are what

WinJS itself uses to animate its own controls, flyouts, and so forth to match the user interface design

guidelines. What’s more, because they are built with CSS transitions and animations, they aren’t

dependent on WinRT and are fully functional within web context pages that have loaded WinJS (but

they do pay attention to whether animations are enabled as described in the previous section).

All of the animations, as listed in the table below, have guidance as to when and how they should

be applied. These are really design questions more than implementation questions. Let me emphasize

this: animations should be part of an app’s design, not just an implementation detail, because they are

very closely related to the overall user experience of an app. I say this because oftentimes app designs

are represented with static wireframes or mockups, which don’t indicate dynamic elements like

animations and transitions. By being aware of what’s in the animations library, designers can more

readily see where animations are appropriately applied and include them in even the earliest stages of

an app design. This is important because animations are best implemented as part of the app’s layout,

because they are often tightly coupled with layout.

You can find full guidance in the Animating Your UI and Animating UI Surfaces topics in the

documentation, which will also contain specific guidelines for the individual animations below. I will

only summarize here.

Key Point Built-in controls and other UI elements like those we’ve worked with in previous chapters

already make use of the appropriate animations. For example, you don’t need to animate a button tap

in the button element nor animate the appearance or disappearance of controls like

WinJS.UI.Appbar. You’ll primarily use them when implementing UI directly with HTML layout or

451

http://msdn.microsoft.com/en-us/library/windows/apps/br229780.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465165.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465259.aspx

when building custom controls.

Animation Name WinJS.UI.Animation methods Description and Usage

Page Transition enterPage, exitPage Animates a whole page into or out of view, such as

when bringing in the first page of an app after the

splash screen or when switching between app pages.

Avoid using enterPage when content is already on

screen—that is, use it only when changing the entirety

of the content.

Content Transition enterContent, exitContent Animates one or more elements into or out of view,

specifically used for content that wasn’t ready when a

page was loaded or when a section of a page is

changing within a container. If other content needs to

move in response to the container change, such as if it

is resizing, you can move those other elements by

using expand/collapse or reposition animations.

Fade In/Out fadeIn, fadeOut Used to show or hide transient UI or controls, as is

done with scrollbars or when a placeholder is replaced

with a loaded item. These are also good default

animations for situations where other specific

animations don’t apply.

Crossfade crossFade Softens the transition between different states of an

item. This is also used in refresh scenarios, such as

when a news app updates all of its content at once.

Pointer Up/Down pointerUp, pointerDown Provides immediate feedback for a successful tap or

click on an item or “tile.” Note that built-in controls

like the button and ListView already incorporate these

animations.

Expand/Collapse createExpandAnimation,
createCollapseAnimation

Adds or removes extra space within content, such as

making room for error messages or hiding an option

that isn’t needed.

Reposition createRepositionAnimation Used when moving an element to a new position.

Show/Hide Popup showPopup, hidePopup Used to show and hide popup UI like menus, flyouts,

tool tips, and other contextual UI that appears above

an app canvas (dialogs, however, use Fade In). Avoid

using for elements that are part of that canvas

directly—use Content Transition and Fade In/Out

animations instead. You also don’t need to use these

directly when using built-in controls, as those controls

already apply the animations.

Show/Hide Edge UI

Show/Hide Panel UI

showEdgeUI, hideEdgeUI,

showPanel, hidePanel

Used to show and hide edge-oriented UI like app bars

and the soft keyboard. The Edge UI animations are for

elements that only move a short distance onto the

screen; the panel animations are for those that move

longer distances.

These should not be used for UI that’s not moving

from or toward an edge; use the Reposition animation

452

instead. Crossfade is also typically applied after

showing and simultaneous with hiding. The built-in

edge controls like the app bar and settings pane

already apply these animations.

Peek (for tiles) createPeekAnimation Animates a tile update when alternating between

showing an image and text when the tile isn’t tall

enough to see both. Can also be used to cycle through

images on a tile. This is the animation used for live tiles

on the Windows Start screen.

Badge Update updateBadge Used to update the number on a badge.

Swipe Hint swipeReveal Used in response to a tap-and-hold event to indicate

that an item can be selected with a swipe.

Swipe Select/Deselect swipeSelect, swipeDeselect Animates an item when swiped to select or deselect it.

Add/Delete from List createAddToListAnimation,
createDeleteFromListAnimation

Animates the insertion of deletion of items from a list,

as used by the ListView control. The add animation

repositions existing items to make space for the new

and then brings in those new items; the delete

animation pulls items out and repositions those that

remain. Avoid using these to display or remove a

container or to add or remove the entire contents of

the collection; use Content Transitions instead.

Add/Delete from Search

List

createAddToSearchListAnimation,
createDeleteFromSearchListAnimation

These animations are similar to those for adding and

removing from a list, but they are designed for much

more rapid changes as happens when populating a list

of search results. Simply said, they have shorter

durations.

Start/End Drag-Drop dragSourceStart, dragSourceEnd,

dragBetweenEnter, dragBetweenLeave

Provides visual feedback during drag-and-drop

operations. The start and end animations are for the

item being moved and should always be used

together; the enter and leave animations are for

rearranging the area around a potential drop point,

which helps to show how the content will appear if the

drop happens. For this purpose you’ll need to define

the size of potential target areas (rectangles) so that

you can track pointer movement in and out of those

areas.

If you want to see what these animations are actually doing, you can find all of that in the WinJS

source code’s ui.js file. Just search for the method, and you’ll see how they’re set up. The Crossfade

animation, for example, animates the incoming element’s opacity property from 0 to 1 over 167ms

with a linear timing function, while animating the outgoing element’s opacity from 1 to 0 in the same

way. The Pointer Down animation changes the element’s scale from 100% to 97.5% over 167ms

according to a cubic-bezier curve, while Pointer Up does the opposite.

To be honest, however, as interesting as such details might be, they are always subject to change.

Plus, if you really need to obtain such details programmatically, use the APIs in the

453

Windows.UI.Core.AnimationMetrics namespace rather than looking at the WinJS sources. And in the

end, what’s important is that you choose animations not for their visual effects but for their semantic

meaning, using the right animations at the right times in the right places. So let’s see how we do that.

Tip #1 All of the WinJS animations are implemented using the WinJS.UI.executeAnimation and

WinJS.UI.executeTransition functions, which you can use for custom animations as well.

Tip #2 While an animation is running always avoid changing an element’s contents and its CSS

properties that affect the same properties. The results are unpredictable and unreliable and can cause

performance problems.

Animations in Action
To see all of the WinJS animations in action, run the HTML Animation Library sample. There are many

different animations to illustrate, and this sample most certainly earns the award for the largest number

of scenarios: twenty-two! In fact, the first thing you should do is go to Scenario 22 and see whether

animations are enabled, as that will most certainly affect your experience with the rest of the same. The

output of that scenario will show you whether the UISettings.animationsEnabled flag is set and

allow you to increment or decrement the WinJS enablement count. So go check that now, because if

you’re like me, you might have turned off system animations a long time ago for a snappier desktop

experience. (For example, I dislike waiting for the task bar to animate up and down!) I didn’t realize at

first that it affected WinJS in this way!

Clearly, with 22 scenarios in the sample I won’t be showing code for all of them here; indeed, doing

so isn’t necessary because many operate in the same way. The only real distinction is between those

whose methods start with create and those that don’t, as we’ll see in a bit.

All the animation methods return a promise that you can use to take additional action when the

animation is complete (at which point your handlers in then or done will be called). If you already know

something about CSS transitions and animations, you’ll rightly guess that these promises encapsulate

events like transitionend and animationend, so you won’t need to listen for those events directly if

you want to chain or synchronize animations. For chaining, you can just chain the promises; for

synchronization, you can obtain the promises for multiple animations and wait for their completion

using methods like WinJS.Promise.join or WinJS.Promise.any.

Animation promises also support the cancel method, which removes the animation from the

element. This immediately sets the affected property values to their final states, causing an immediate

visual jump to that end state. And whether you cancel an animation or it ends on its own, the promise

is considered to have completed successfully; canceling an animation, in other words, will call the

promise’s completed handler and not its error handler.

Do be aware that because all of the WinJS animations are implemented with CSS, they won’t

actually start until you return from whatever function you call the methods and give control back to

the UI thread. This means that you can set up multiple animations knowing that they’ll more or less

454

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.core.animationmetrics.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779763.aspx
http://code.msdn.microsoft.com/windowsapps/Using-the-Animation-787f3720

start together once you return from the function. So even though the animation methods return

promises, they are not like other asynchronous operations in WinRT that start running on another

thread altogether.

Anyway, let’s look at some code! In the simplest case, all you need to do is call one of the animation

methods and the animation will execute when you return. Scenario 6 of the sample, for instance, just

adds these handlers to the MSPointerDown and MSPointerUp events of three different elements

(js/pointerFeedback.js):

function onPointerDown(evt) {

 WinJS.UI.Animation.pointerDown(evt.srcElement);

}

function onPointerUp(evt) {

 WinJS.UI.Animation.pointerUp(evt.srcElement);

}

We typically don’t need to do anything when the animations complete, so there’s no need for us to

call done or provide a completed function. Truly, using many of these animations is just this simple.

Let’s look at some examples.

The crossFade animation, for its part (Scenario 10), takes two elements: the incoming element and

the outgoing element (all of which must be visible and part of the DOM throughout the animation,

mind you!). Calling it then looks like this (js/crossfade.js):

WinJS.UI.Animation.crossFade(incoming, outgoing);

Yet this isn’t the whole story. A common feature among the animations is that you can provide an

array of elements on which to execute the same animation or, in the case of crossFade, two arrays of

elements. While this isn’t useful for animations like pointerDown and pointerUp (each pointer event

should be handled independently), it’s certainly handy for most others.

Consider the enterPage animation. In its singular form it accepts an element to animate and an

optional initial offset where the element begins relative to its final position. (Generally speaking, you

should omit this offset if you don’t need it, because it will give result in better performance—the

sample passes null here, which I’ve omitted in the code below.) enterPage can also accept a collection

of elements, such as the result of a querySelectorAll. So we see how Scenario 1

(html/enterPage.html and js/enterPage.js) provides a choice of how many elements are animated

separately:

switch (pageSections) {

 case "1":

 // Animate the whole page together

 enterPage = WinJS.UI.Animation.enterPage(rootGrid;

 break;

 case "2":

 // Stagger the header and body

 enterPage = WinJS.UI.Animation.enterPage([[header, featureLabel], [contentHost, footer]]);

 break;

455

 case "3":

 // Stagger the header, input, and output areas

 enterPage = WinJS.UI.Animation.enterPage([[header, featureLabel], [inputLabel, input],

 [outputLabel, output, footer]]);

 break;

}

When the element argument is an array, the offset argument, if provided, can be either a single

offset (that is applied to all elements) or an array (to indicate offsets for each element individually).

Each offset is an object with the properties that define the offset. See js/dragBetween.js for scenario 13

where this is used with the dragBetweenEnter animation:

WinJS.UI.Animation.dragBetweenEnter([box1, box2],

 [{ top: "-40px", left: "0px" }, { top: "40px", left: "0px" }]);

Here’s a modification showing a single offset that’s applied to both elements:

WinJS.UI.Animation.dragBetweenEnter([box1, box2], { top: "0px", left: "40px" });

Scenario 4 (js/transitioncontent.js) shows how you can chain a couple of promises together to

transition between two different blocks of content:55

WinJS.UI.Animation.exitContent(outgoing, null).done(function () {

 outgoing.style.display = "none";

 incoming.style.display = "block";

 return WinJS.UI.Animation.enterContent(incoming, null);

});

Things get a little more interesting when we look at the create* animation methods, together

referred to as the layout animations, which are for adding and removing items from lists, expanding

and collapsing content, and so forth. Each of these has a three-step process where you create the

animation, manipulate the DOM, and execute the animation, as shown in Scenario 7

(js/addAndDeleteFromList.js):

// Create addToList animation.

var addToList = WinJS.UI.Animation.createAddToListAnimation(newItem, affectedItems);

// Insert new item into DOM tree.

// This causes the affected items to change position.

list.insertBefore(newItem, list.firstChild);

// Execute the animation.

addToList.execute();

The reason for the three-step process is that in order to carry out the animation on newly added

items, or items that are being removed, they all need to be in the DOM when the animation executes.

The process here lets you create the animation with the initial state of everything, manipulate the DOM

55 Note that the actual sample passes the value output as the first parameter to exitContent and enterContent; the code

should appear as shown here, with the outgoing value being passed to exitContent and incoming passed to

enterContent.

456

(or just set styles and so forth) to create the ending state, and then execute the animation to “let ‘er

rip.” You can then use the done method on the promise returned from execute to clean do your final

cleanup. Scenario 5 (js/expandAndCollapse.js) makes this point clear:

// Create collapse animation.

var collapseAnimation = WinJS.UI.Animation.createCollapseAnimation(element, affected);

// Remove collapsing item from document flow so that affected items reflow to their new position.

// Do not remove collapsing item from DOM or display at this point, otherwise the animation on the

// collapsing item will not display

element.style.position = "absolute";

element.style.opacity = "0";

// Execute collapse animation.

collapseAnimation.execute().done(

 // After animation is complete (or on error), remove from display.

 function () { element.style.display = "none"; },

 function () { element.style.display = "none"; }

);

As a final example—because I know you’re smart enough to look at most of the other cases on your

own—Scenario 21 (js/customAnimation.js) shows how to use the WinJS.UI.executeAnimation and

WinJS.UI.executeTransition methods.

function runCustomShowAnimation() {

 var showAnimation = WinJS.UI.executeAnimation(

 target,

 {

 // Note: this keyframe refers to a keyframe defined in customAnimation.css.

 // If it's not defined in CSS, the animation won't work.

 keyframe: "custom-opacity-in",

 property: "opacity",

 delay: 0,

 duration: 500,

 timing: "linear",

 from: 0,

 to: 1

 }

);

}

function runCustomShowTransition() {

 var showTransition = WinJS.UI.executeTransition(

 target,

 {

 property: "opacity",

 delay: 0,

 duration: 500,

 timing: "linear",

 to: 1

 }

);

}

457

If you want to combine multiple animations (as many of the WinJS animations do), note that both

of these functions return promises so that you can combine multiple results with WinJS.Promise.join

to then have a single completed handler in which to do post-processing. This is exactly what WinJS

does internally.

And if you know anything about CSS animations and transitions already, you can probably tell that

the objects you pass to executeAnimation and executeTransition are simply shorthand expressions

of the CSS styles you would use otherwise. In short, these methods give you an easy way to set up your

own custom animations and transitions through the capabilities of CSS. Let’s now look at those

capabilities directly.

CSS Animations and Transitions

As noted before, many animation needs can be achieved through CSS rather than with JavaScript code

running on intervals or animation frames. The WinJS Animations Library, as we’ve just seen, is entirely

built on CSS. Using CSS relieves us from writing a bunch of code that worries about how much to move

every element in every frame based on elapsed time and synchronized to the refresh rate. Instead, we

can simply declare what we want to happen (perhaps using the WinJS.UI.executeAnimation and

WinJS.UI.executeTransition helpers) and let the host take care of the details. Delegation at its

best! In this section, then, let’s take a closer look at the capabilities of CSS for WinRT apps.

Another huge benefit of performing animations and transitions through CSS—specifically those that

affect only transforms and opacity properties—is that they can be used to create what are called

independent animations that run on a GPU thread rather than the UI thread. This makes them

smoother and more power-efficient than dependent animations that are using the UI thread—which is

what happens when you create animations in JavaScript using intervals, use CSS animations and

transitions with properties other than transform and opacity, or run animations on elements that are

partly or wholly obscured by other elements.

We’ll come back to this subject in a bit when we look at sample code. As I assume that you’re

already at least a little familiar with the subject, let’s first review how CSS animations and transitions

work. I say animations and transitions both because there are, in fact, two separate CSS specifications:

CSS animations (http://www.w3.org/TR/css3-animations/), and CSS transitions

(http://www.w3.org/TR/css3-transitions/). So what’s the difference?

Normally when a CSS property changes, its value jumps immediately from the old value to the new

value, resulting in a sudden visual change. Transitions instruct the app host how to change one or more

property values gradually, according to specific delay, duration, and timing curve parameters. All of this

is declared within a specific style rule for an element (as well as :before and :after pseudo-elements)

using four individual styles:

 transition-property (transitionProperty in JavaScript) Identifies the CSS

properties affected by the transition (the transitionable properties are listed in section 7

458

http://msdn.microsoft.com/en-us/library/windows/apps/hh779762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779763.aspx
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-transitions/

of the spec).

 transition-duration (transitionDuration in JavaScript) Defines the duration of

the transition in seconds (fractional seconds are supported, as in .125s; negative values

are normalized to 0s).

 transition-delay (transitionDelay in JavaScript) Defines the delayed start of the

transitions relative to the moment the property is changed, in seconds. If a negative

value is given, the transition will appear to have started earlier but the effect will not

have been visible.

 transition-timing-function (transitionTimingFunction in JavaScript) Defines

how the property values change over time. The functions are ease, linear, ease-in,

ease-out, ease-in-out, cubic-bezier, step-start, and step-end. The W3C spec has

some helpful diagrams that explain these, but the best way to see the difference is to

try them out in running code.

When defining transitions for multiple properties, each value in each style is separated by a comma.

For example, a transition for a single property appears as so:

#div1 {

 transition-property: left;

 transition-duration: 2s;

 transition-delay: .5s;

 transition-timing-function: linear;

}

For multiple properties:

.class2 {

 transition-property: opacity, left;

 transition-duration: 1s, 0.25s;

}

Again, transitions don’t specify any actual beginning or ending property values—they define how

the change actually happens whenever a new property is set through another CSS rule or through

JavaScript. So, in the first case above, if left is initially 100px and it’s set to 300px through a :hover

rule, it will transition after 0.5 seconds from 100px to 300px over a period of 2 seconds. Doing the

math, the visual movement with a linear timing function will run at 100px/second. Other timing

functions will show different rates of movement at different points along the 2-second duration.

If a bit of JavaScript then sets the value to -200px—ideally after the first transition completes and

fires its transitionend event—the value will again transition over the same amount of time but now

from 300px to -200px (a total of 500px). As a result, the element will move at a higher speed

(250px/second, again with the linear timing function) because it has more ground to cover for the

same transition duration.

What’s also true for transitions is that if you assign a style (e.g., class2 above) to an element,

459

nothing will happen until an affected property changes value. Changing a style like this also has no

effect if a transition is already in progress. The exception is if you change the transition-property, in

which case that transition will stop. With this, it’s important to note that the default value of this

property is all, so clearing it (setting it to "") doesn’t stop all transitions…it enables them! You instead

need to set the property to none.

Note Elements with display: none do not run CSS animations and transitions at all, for obvious

reasons! The same cannot be said about elements with display: hidden, visibility: hidden,

visibility: collapsed, or opacity: 0, which means that hiding elements with some means other

than display: none might end up running animations on nonvisible elements, which is a complete

waste of resources. In short, use display: none!

Animations work in an opposite manner to transitions. Animations are defined separately from any

CSS style rules but are then attached to rules. Assigning that style to an element then triggers the

animation immediately. Furthermore, groups of affected properties are defined together in keyframes

and are thus animated together.

A CSS animation, in other words, is the progressive updating of one or more CSS property values

over a period of time. The values change from an initial state to a final state through various

intermediate states defined by a set of keyframes. Here’s an example (from Scenario 1 of the HTML

Independent Animations sample we’ll be referring to):

@keyframes move {

 from { transform: translateX(0px); }

 50% { transform: translateX(400px); }

 to { transform: translateX(800px); }

}

More generally:

 Start with @keyframes <identifier> where <identifier> is whatever name you want

to assign to the keyframe (like move above). You’ll refer to this elsewhere in style rules.

 Within this keyframe, you create any number of rule sets, each of which represents a

different snapshot of the animated element at different stages in the overall animation,

demarked by percentages. The from and to keywords, as shown above, are simply

aliases for 0% and 100%, respectively, and are not necessary since you can just use the

straight percentages.

 Within each rule set you then define the desired value of any number of style properties

(just transform in the example above), with each separated by a semicolon as with CSS

styles. If a value for a property is the same as in the previous rule set, no animation will

occur for that property. If the value is different, the rendering engine will animate the

change between the two values of that property across the amount of time equivalent

to <overall animation time> * (<toPercentage> - <fromPercentage>). A timing

function can also be specified for each rule set using the animation-timing-function

460

http://code.msdn.microsoft.com/windowsapps/Independent-animations-app-c00b2962
http://code.msdn.microsoft.com/windowsapps/Independent-animations-app-c00b2962

style. For example:

50% { transform: translateX(400px); animation-timing-function: ease-in;}

One thing you’ll notice here is that while the keyframe can indicate a timing function, it doesn’t say

anything about actual timings. This is left for the specific style rules that refer to the keyframe. In

Scenario 1 of the sample, for instance:

.ball {

 animation-name: move;

 animation-duration: 2s;

 animation-timing-function: linear;

 animation-delay: 0s;

 animation-iteration-count: infinite;

 animation-play-state: running;

}

Here, the animation-name style (animationName in JavaScript) identifies the keyframe to apply. The

other animation-* styles then describe how the keyframe should execute:

 animation-duration (animationDuration in JavaScript) The duration of the

animation in seconds (fractions allowed, of course). Negatives are the same as 0s.

 animation-timing-function (animationTimingFunction in JavaScript) Defines, as

with transitions, how the property values are interpolated over time—ease (the default),

linear, ease-in, ease-out, ease-in-out, cubic-bezier, step-start, and step-end.

 animation-delay (animationDelay in JavaScript) Defines the number of seconds

after which the animation will start when the style is applied. This can be negative, as

with transitions, which will start the animation partway through its cycle.

 animation-iteration-count (animationIterationCount in JavaScript) Indicates

how many times the animation will repeat (default is 1). This can be a number or

infinite, as shown above.

 animation-direction (animationDirection in JavaScript) Indicates whether the

animation should play normal (forward), reverse, alternate (back and forth), or

alternate-reverse (back and forth starting with reverse). The default is normal.

 animation-play-state (animationPlayState in JavaScript) Allows you to play or

pause an animation. The default state of running plays the animation; setting this to

paused will pause it until you set the style back to running.

 animation-fill-mode (animationFillMode in JavaScript) Defines which property

values of the named keyframe will be applied when the animation is not executing,

such as during the initial delay or after it is completed. The default value of none applies

the values of the 0% or from rule set if the direction is forward and alternate

461

http://dev.w3.org/csswg/css3-animations/#the-animation-duration-property-
http://dev.w3.org/csswg/css3-animations/#animation-timing-function_tag
http://dev.w3.org/csswg/css3-animations/#the-animation-delay-property-
http://dev.w3.org/csswg/css3-animations/#the-animation-iteration-count-property-"
http://dev.w3.org/csswg/css3-animations/#the-animation-direction-property-
http://dev.w3.org/csswg/css3-animations/#the-animation-play-state-property-
http://dev.w3.org/csswg/css3-animations/#the-animation-fill-mode-property-

directions; it applies those of the 100% or to rule set if the direction is reverse or

alternate-reverse. A fill mode of backwards flips this around. A fill mode of forwards

always applies the 100% or to values (unless the iteration count is zero, in which case it

acts like backwards). The other option, both, is the same as indicating both forwards

and backwards.

 animation (animation in JavaScript) The shorthand style for all of the above (except

for play-state) in the order of name, duration, timing function, delay, iteration count,

direction, and fill mode.

Applying a style that contains animation-name will trigger the animation for that element. This can

happen automatically if the animation is named in a style that’s applied by default. It can also happen

on demand if the style is assigned to an element in JavaScript or if you set the animation property for

an element.

Keyframes, while typically defined in CSS, can also be defined in JavaScript. The first step is to build

up a string that matches what you’d write in CSS, and then you insert that string to the stylesheet. This

is shown in Scenario 7 of the HTML Independent Animations sample (js/scenario7.js):

var styleSheet = document.styleSheets[1];

var element1 = document.getElementById("ballcontainer");

var animationString = '@keyframes bounce1 {'

 // ...

 + '}';

styleSheet.insertRule(animationString, 0);

window.setImmediate(function () {

 element1.style.animationName = 'bounce1';

});

Note how this code uses setImmediate to yield to the UI thread before setting the animationName

property that will trigger the animation. This makes sure that other code that follows (not shown here)

will execute first, as it does some other work we want to complete before the animation begins.

More generally, it’s good to know that CSS animations and transitions start only when you return

from whatever function is setting them up. That is, nothing happens visually until you yield back to the

UI thread and the rendering engine kicks in again, just like when you change nonanimated properties.

This means you can set up however many animations and transitions as desired, and they’ll all execute

simultaneously. Using a callback with setImmediate, as shown above, is a simple way to say, “Run this

code as soon as there is no pending work on the UI thread.”56 Such a pattern is typically for triggering

one or more animations once everything else is set up.

As a final note for this section, you might be interested in The Guide to CSS Animation: Principles

and Examples from Smashing Magazine. This will tell you a lot about animation design beyond just

56 For more on this topic, see http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/setImmediate/Overview.html.

462

http://dev.w3.org/csswg/css3-animations/#the-animation-shorthand-property-
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/setImmediate/Overview.html

how CSS animations are set up in your code.

The Independent Animations Sample
Turning now to the HTML Independent Animations sample, Scenario 1 gives a demonstration of an

independent versus a dependent animation by eating some time on the UI thread (that is, blocking

that thread) according to a slider. As a result, the top red ball (see image below) moves choppily,

especially as you increase the work on the UI thread by moving the slider. The green ball on the

bottom, on the other hand, continues to move smoothly the whole time.

What’s tricky to understand about this sample is that both balls use the same ball CSS style rule we

saw in the previous section. In fact, just about everything about the two elements is exactly the same.

So why does the movement of the red ball get choppy when additional work is happening on the UI

thread?

The secret is in the z-index: -1; style on the red ball in css/scenario1.css (and a corresponding lack

of position: static which negates z-index). For animations to run independently, they must be free

of obstruction. This really gets into the subject of how layout is being composed within the HTML/CSS

rendering engine of the app host, as an animating element that’s somewhere in the middle of the

z-order might end up being independent or dependent. The short of it is that the z-index style is the

only lever that’s available for you to pull here.

As I noted before, independent animations are limited to those that affect only the transform and

opacity properties for an element. If you animate any property that affects layout, like width or left,

the animation will run as dependent (and similar results can be achieved with a scaling and translation

transform anyway). Other factors also affect independent animations, as described on the Animating

topic in the documentation. For example, if the system lacks a GPU, if you overload the GPU with too

many independent animations, or if the elements are too large, some of the animations will revert to

dependent. This is another good reason to be purposeful in your use of animations—overusing them

will produce a terrible user experience on lower-end devices, thereby defeating the whole point of

using animations to enhance the user experience.

The other scenarios of the HTML Independent Animations sample lets you play with CSS transitions

and animations by setting values within various controls and then running the animation. Scenarios 2

463

http://code.msdn.microsoft.com/windowsapps/Independent-animations-app-c00b2962
http://msdn.microsoft.com/en-us/library/windows/apps/hh849087.aspx

and 3 work with CSS transitions for 2D and 3D transforms, respectively, with an effect of the latter

shown in Figure 11-2. As you can see, the element that the sample animates is the container for all the

input controls! Scenarios 5 and 6 then let you do similar things with CSS animations. In all these cases,

the necessary styles are set directly in JavaScript rather than using declarative CSS, so look in the .js files

and not the .css files for the details.

FIGURE 11-2 Output of Scenario 3 of the HTML Independent Animations sample.

Scenarios 4 and 7 then show something we haven’t talked about yet, which are the few simple

events that are raised for transitions and animations (and actually have nothing to do with

independent versus dependent animations). In the former case, any element on which you execute a

CSS transition will fire transitionstart and transitionend events. You can use these to chain

transitions together.

With animations, there are three events: animationstart (which comes after any delay has passed),

animationend (when the animation finished), and animationiteration (at the end of each iteration,

unless animationend also fires are the same time). As with transitions, all of these can be used to chain

animations or otherwise synchronize them. The animationiteration event is also helpful if you need

to run a little code every time an animation finishes a cycle. In such a handler you might check

conditions that would cause you to stop an animation, in which case you can set the

animationPlayState to paused when needed.

Rolling Your Own: Tips and Tricks

If you’re anything like me, I imagine that one of the first things you did when you started playing with

JavaScript is to do some kind of animation: set up some initial conditions, create an timer with

setInterval, do some calculations in the handler and update elements (or draw on a canvas), and

464

keep looping until you’re done. After all, this sort of thing is at the heart of many of our favorite

games! (For an introductory discussion on this, just in case you haven’t done this on your own yet, see

How to Animate Canvas Graphics.)

As such, there is considerable wisdom available in the community on this subject if you decide to go

this route. I put it this way because by now, having looked at the WinJS animations library and the

capabilities of CSS, you should be in a good position to decide whether you actually need to go this

route at all! Some people have estimated that a vast majority of animations needed by most apps can

be handled entirely through CSS: just set a style and let the host do the rest. But if you still need to do

low-level animation, the first thing you should do is ask an important question:

What is the appropriate animation interval?

This is a very important question because oftentimes developers have no idea what kind of interval

to use for animation. It’s not so much of an issue for long intervals, like 500ms or 1s, but developers

often just use 10ms because it seems “fast enough.”

To be honest, 10ms is overkill for a number of reasons. 60 frames per second (fps)—an animation

interval of 16.7ms—is about the best that human beings can even discern and is also the best that

most displays can even handle in the first place. In fact, the best results are obtained when your

animation frames are synchronized with the screen refresh rate.

Let’s explore this a little more. Have you ever looked at a screen while eating something really

crunchy, and noticed how the pixels seem to dance all over the place? This is because display devices

aren’t typically just passive viewports onto the graphics memory. Instead, displays (even LCD and LED

displays) typically cycle through graphics memory at a set refresh rate, which is most commonly 60Hz

or 60fps (but can also be 50Hz or 100Hz).

This means that trying to draw animations at an interval faster than the refresh rate is a waste of

time, is a waste of power (it has been shown to reduce battery life by as much as 25%!), and results in

dropped frames. The latter point is illustrated below, where the red dots are frames that get drawn on

something like a canvas but never make it to the screen because another frame is drawn before the

screen refreshes:

This is why it’s common to animate on multiples of 16.7ms using setInterval. However, using 16.7

assumes a 60Hz display refresh, which isn’t always the case. The right solution, then, for WinRT apps in

JavaScript and web apps both, is to use requestAnimationFrame. This API simply takes a function to

call for each frame:

requestAnimationFrame(renderLoop);

465

http://msdn.microsoft.com/en-us/library/windows/apps/hh465053.aspx

You’ll notice that there’s not an interval parameter; the function rather gives you a way to align your

frame updates with display refreshes so that you draw only when the system is ready to display

something:

What’s more, requestAnimationFrame also takes page visibility into account, meaning that if you’re

not visible (and animations are thus an utter waste), you won’t be asked to render the frame at all. This

way you don’t need to handle page visibility events yourself to turn animations on and off: you can just

rely on the behavior of requestAnimationFrame directly.

Tip If you really want an optimized display, consider doing all drawing work of your app (not just

animations) within a requestAnimationFrame callback. That is, when processing a change, as in

response to an input event, update your data and call requestAnimationFrame with your rendering

function rather than doing the rendering immediately.

Calling this method once will invoke your callback for a single frame. To keep up a continuous

animation, your handler should call requestAnimationFrame again. This is shown in the Using

requestAnimationFrame for power efficient animations sample (this wins second place for long sample

names!), which draws and animates a clock with a second hand:

The first call to requestAnimationFrame happens in the page’s ready method, and then the

callback refreshes the request (js/scenario1.js):

window.requestAnimationFrame(renderLoopRAF);

function renderLoopRAF() {

 drawClock();

 window.requestAnimationFrame(renderLoopRAF);

}

where the drawClock function gets the current time and calculates the angle at which to draw the

466

http://code.msdn.microsoft.com/windowsapps/Using-requestAnimationFrame-924b039a
http://code.msdn.microsoft.com/windowsapps/Using-requestAnimationFrame-924b039a

clock hands:

function drawClock() {

 // ...

 // Note: this is modified from the sample to only create a Date once, not each time

 var date = new Date();

 var hour = date.getHours();

 var minute = date.getMinutes();

 var second = date.getSeconds();

 // ...

 var sDegree = second / 60 * 360 - 180;

 var mDegree = minute / 60 * 360 - 180;

 var hDegree = ((hour + (minute / 60)) / 12) * 360 - 180;

 // Code to use the context's translate, rotate, and drawImage methods to render each clock hand

}

Here’s a challenge for you: What’s wrong with this code? Run the sample and look at the second

hand. Then think about how requestAnimationFrame aligns to screen refresh cycles with an interval

like 16.7ms. What’s wrong with this picture?

What’s wrong is that even though the second hand is moving visibly only once per second, the

drawClock code is actually executing nearly 50, 60, or 100 times more frequently than that! Thus the

“Efficient and Smooth Animations” title that the sample shows on screen is anything but! Indeed, if you

run Task Manager, you can see that this simple “efficient” clock is ironically consuming 15–20% of the

CPU. Yikes!

Remember that an interval aligned with ~16.7ms screen refreshes (on a 60Hz display) implies 60fps

rendering; if you don’t need that much, you should skip frames yourself (thereby saving processing

power) according to elapsed time and not blindly redraw (as this sample is doing). In fact, if all we need

is a once-per-second movement in a clock like this, repeated calls to requestAnimationFrame is sheer

overkill. We could instead use setInterval(function () { requestAnimationFrame(drawClock) },

1000) and be done (that is, coordinating the 1s interval with a screen refresh). If you make this change

in the ready method, for example, the CPU usage will drop precipitously:

But let’s say we actually want to put 60fps animation and 20% of the CPU to good use—in that case,

we should at least make the clock’s second hand move smoothly, which can be done by simply adding

milliseconds into the angle calculation:

var second = date.getSeconds() + date.getMilliseconds() / 1000;

Still, 20% is a lot of CPU power to spend on something so simple and 60fps is still serious overkill.

467

~10fps is probably sufficient for good effect. In this case we can calculate elapsed time within

renderLoopRAF to call drawClock only once 0.1 seconds have passed:

var lastTime = 0;

function renderLoopRAF() {

 var fps = 10; // Target frames per second

 var interval = 1000 / fps;

 var curTime = Math.floor(Date.now() / interval);

 if (lastTime != curTime) {

 lastTime = curTime;

 drawClock();

 }

 requestAnimationFrame(renderLoopRAF);

}

That’s not quite as smooth—10fps creates the sense of a slight mechanical movement)—but it

certainly has much less impact on the CPU:

I encourage you to play around with variations on this theme to see what kind of interval you can

actually discern with your eyes. 10fps and 15fps gives a sense of mechanical movement; at 20fps I don’t

see much difference from 60fps at all, and the CPU is running at about 7–10%. You might also try

something like 4fps (quarter-second intervals) to see the effect. In this chapter’s companion content

I’ve included a variation of the original sample where you can select from a various of target rendering

rates.

The other thing you can do in the modified sample is draw the hour and minute hand at fractional

angles. In the original code, the minute hand will move suddenly when the second hand comes around

to the top. Many analog clocks don’t actually work this way: their complex gearing moves both the

hour and the minute hand ever so slightly with every tick. To simulate that same behavior, we just need

to include the seconds in the minutes calculation, and the resulting minutes in the hours, like so:

var second = date.getSeconds() + date.getMilliseconds() / 1000;

var minute = date.getMinutes() + second / 60;

var hour = date.getHours() + minute / 60;

In real practice, like a game, you’d generally want to avoid just running a continuous animation

loop like this: if there’s nothing moving on the screen that needs animating (for which you might be

using setInterval just as a timer) and there are no input events to respond to, there’s no reason to

call requestAnimationFrame. Also, be sure when the app is paused that you stop calling

requestAnimationFrame until the animation starts up again. (You can also use cancelAnimationFrame

to stop one you’ve already requested.) The same is true for setTimeout and setInterval: don’t

generate unnecessary calls to your callback functions unless you really need to do the animation. For

this, use the visibilitychanged event to know if your app is visible on screen. While

requestAnimationFrame takes visibility into account (the sample’s CPU use will drop to 0% before it is

468

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.visibilitychanged.aspx

suspended), you need to do this on your own with setTimeout and setInterval.

In the end, the whole point here is that really understanding the animation interval you need (that

is, your frame rate) will help you make the best use of requestAnimationFrame, if that’s needed, or

setInterval/setTimeout. They all have their valid uses to deliver the right user experience with the

right level of consumption of system resources.

What We’ve Just Learned

 In the desktop control panel, users can elect to disable most (that is, nonessential)

animations. Apps should honor this, as does WinJS, by checking the

Windows.UI.ViewManagement.UISettings.animationsEnabled property.

 The WinJS animations library has many built-in animations that embody the Windows 8

personality. These are highly recommended for apps to use for the scenarios they

support, such as content and page transitions, selections, list manipulation, and others.

 All WinJS animations are built using CSS and thus benefit from hardware acceleration.

When the right conditions are met, such animations run in the GPU and are thus not

affected by activity on the UI thread.

 Apps can also use CSS animations and transitions directly, according to the W3C

specifications.

 Apart from WinJS and CSS, apps can also use functions like setInterval and

requestAnimationFrame to implement direct frame-by-frame animation. The

requestAnimationFrame method is best to align frames with the display refresh rate,

leading to the best overall performance.

469

Chapter 12

Contracts

Recently I discovered a delightfully quirky comedy called Interstate 60 that is full of delightfully quirky

characters. One of them, played by Chris Cooper, is a former advertising executive who, having

discovered he was terminally ill with lung cancer, decided to make up for a career built on lies by

encouraging others to be more truthful. As such, he was very particular about agreements and

contracts, especially those in writing.

We really get to see the quirkiness of the character in a scene at a gas station where he’s

approached by a beggar with a sign, “Will work for food.” Seeing this, he offers the man an apple in

exchange for cleaning his car’s windshield. But when the man refuses to honor the written contract on

his sign, Cooper’s character gets increasingly upset over the breach…to the point where he announces

his terminal illness, rips open his shirt, and reveals the dynamite wrapped around his body and the

10-second timer that’s already counting down!

In the end, he drives away with a clean windshield and the satisfaction of having helped

someone—in his delightfully quirky way—to fulfill their part of a written contract. And he reappears

later in the movie in a town that’s 100% populated with lawyers; I’ll leave it to you to imagine the

result, or at least enjoy the film.

Agreements between two parties are exceptionally important in a civil society—dynamite aside!—as

they are in a well-running computer system. Agreements are especially important where apps provide

extensions to the system and where apps written by different people at different points in time

cooperate between themselves to fulfill a certain task.

Such is the nature of various contracts within Windows 8, which as a whole is perhaps one of the

most powerful features of the entire system. With any given contract, one party is the consumer or

receiver of information that’s managed through the contract. The other party is then the provider of

that information. The contract itself is then generic: neither party needs any specific knowledge of the

other, just knowledge of their side of the contract. It might not sound like much, but what this allows is

a degree of extensibility that gets richer and richer as more apps that support those contracts are

added to the system. I figure that when users really start to experience what these contracts provide,

they’ll more and more look for and choose apps from the Windows Store that use contracts to create

powerful user experiences.

Within the apps themselves, consuming contracts typically happens through an API call, such as the

file pickers, or is already built into the system through UI like the Charms bar. Providing information for

a contract is often the more interesting part, because an app needs to announce the capability through

its manifest and then handle different forms of activation. Again, we’ve seen this already with Settings,

and now we can explore many of the others.

470

The table below summarizes all the contracts and other extensions in Windows 8 (in alphabetical

order), some of which serve to allow apps to work together while others serve to allow apps to extend

system functionality. Full descriptions can be found on App contracts and extensions. Those that are

covered in this chapter are colored in green: share, search, file type and protocol associations, file

pickers, cached file updater, and contacts. Others contracts have been or will be covered in the

chapters indicated, and a few I’ve simply left for you to explore through the linked documentation and

samples.

Tip For a comparison of the different options for exchanging data—the share contract, the clipboard,

and the file save picker contract—see Sharing and exchanging data on the Windows Developer

Center. It outlines different scenarios for each option and when you might implement more than one

in the same app.

Contract/Extension Provider Consumer Description, Documentation, and Samples

Account picture

provider (Chapter 14)

Apps that can take a picture Windows (account picture) When user changes an account picture, they can

either select an existing one or take a new one; see

Account picture name sample.

AutoPlay (Chapter

15)

Apps that want to be listed as

AutoPlay option

Windows See Auto-launching with AutoPlay and the

Removable Storage sample.

Background tasks

(Chapters 13 and 14)

Apps that have background

tasks

Windows Allows apps to run small tasks in the background

(that is, when otherwise suspended) without user

interaction. See Introduction to background tasks as

well as Chapter 13. Background file transfers are a

special case supported by specific APIs; see

Transferring data in the background and Chapter 14.

Cached file updater Apps that provide access to

their data through file pickers

and want to synchronize

updates

Apps using the file picker API

and the file APIs to manage

them.

Provider apps can allow the consumer to maintain a

cached copy of a file. Through this contract, the

provider can manage updates between the local

copy and the source copy. See Integrating with file

picker contracts.

Camera settings

(Chapter 15)

Apps with custom camera UI Windows Camera Capture UI See Developing Windows 8 device apps for cameras.

Contact picker Apps that manage contact

data (like an address book)

Apps that use the contact

picker API (like email)

Launches an app to provide a list of possible

contacts to select. See Managing user contacts.

File activation (file

type association)

Apps that can open files of a

particular type

Windows Explorer and apps

that use the launcher API

Launches an app to open/service a file when needed.

See How to handle file activation and

Auto-launching with file and URI associations.

File open picker/file

save picker

App with data that can appear

as files to other apps for

opening and/or saving (there

are two separate contracts).

Apps using the file picker API

(also certain Windows

features)

Makes data that is otherwise hidden inside and

managed by apps appear as if they were part of the

file system. See Integrating with file picker contracts.

Game explorer Game apps with a Game

Definition File

Windows (parental controls) Manages age ratings for games. See Creating a GDF

file.

Play To (Chapter 10) Apps that can play media to a

DLNA device

Windows (Devices charm >

Connect)

See Streaming media to devices using Play To.

Print task settings

(Chapter 15)

Printer device apps Windows (Device charm >

Print)

See Developing Windows 8 device apps for printers.

Protocol activation Apps that can open URIs that Windows Explorer and apps Launches an app to open/service a URI when

471

http://msdn.microsoft.com/en-us/library/windows/apps/hh464906.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464923.aspx
http://go.microsoft.com/fwlink/?LinkId=231579
http://msdn.microsoft.com/en-us/library/windows/apps/hh452731.aspx
http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0
http://www.microsoft.com/download/en/details.aspx?id=27411
http://msdn.microsoft.com/en-us/library/windows/apps/hh452979.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465174.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465174.aspx
http://msdn.microsoft.com/library/windows/hardware/hh454870
http://msdn.microsoft.com/en-us/library/windows/apps/hh464939.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452691.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465174.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465153.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465153.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465176.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/br259129

(URI scheme

association)

begin with a particular URI

scheme

that use the launcher API needed. See How to handle protocol activation and

Auto-launching with file and URI associations.

Search Apps with searchable data Windows (Search charm) Provides the ubiquitous ability to search any app

from anywhere. See Adding search to an app.

Settings (Chapter 8) Apps with settings Windows (Settings charm) Provides a standard place for app settings. See

Adding app settings.

Share Apps with sharable data Apps that can receive data to

incorporate into itself or

share to a

Provides a linkage of data transfer between apps so

that source apps don’t need to be particularly aware

of individual targets like FaceBook, etc. See Adding

share.

SSL/certificates

(Chapter 14)

Apps that need to install a

certificate

Apps needing to supply a

certificate to another service

See Encrypting data and working with certificates.

Share

Though Search appears at the top of the Charms bar, the first contract I want to look at in depth is

Share—after all, it’s one of the first things you learn as a child! In truth, I’m starting with Share because

we’ve already seen the source side of the story starting back in Chapter 2, “Quickstart,” with the Here

My Am! app, and our coverage here will also include a brief look at the age-old clipboard at the end of

this section.

Here’s what we’ve already learned about Share, with the more complete process illustrated in Figure

12-1:

 An app with sharable content listens for the datarequested event from the object

returned from

Windows.ApplicationModel.DataTransfer.DataTransferManager.getForCurrentVi

ew(). This event is fired whenever the user invokes the Share charm. Note that if an app

doesn’t listen for this event at all, the Share charm will show a default “unable to share”

message (one that is certain to be disappointing to users!).

 In its event handler, the app determines whether it has anything to share in its current

state. If it does, it populates the

Windows.ApplicationModel.DataTransfer.DataPackage provided in the event.

 Based on the data formats in the package, Windows—that is, an agent called the share

broker who manages the contract—determines the share target apps to display to the

user. The user can also control which apps are shown through Change PC Settings >

Share.

 When the user picks a target, the associated app is activated and receives the data

package to process however it wants.

472

http://msdn.microsoft.com/en-us/library/windows/apps/hh452686.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452691.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465231.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770540.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758314.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758314.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465012.aspx

FIGURE 12-1 Processing the Share contract as initiated by the user’s selection of the Share charm.

This whole process provides a very convenient shortcut for users to take something they love in one

app and get it into another app with a simple edge gesture and picking an app. What’s very cool about

the Share contract is that the source doesn’t have to care what happens to the data—its only role is to

provide whatever data is appropriate for sharing at the moment the user invokes the Share charm (if, in

fact, there is appropriate data—sometimes there isn’t). This liberates source apps from the burden of

having to predict, anticipate, or second-guess what users might want to do with the data. Perhaps they

want to email it, share it via social networking, drop it into a content management app…who knows?

Well, only the user knows, so what the share broker does with that data is let the user decide! Given

the data package from the source, the broker matches the formats in that package to apps that know

how to handle them and displays that list to the user. That list can contain apps, for one, but also

something called a quicklink (a Windows.ApplicationModel.DataTransfer.ShareTarget.Quicklink

object, to be precise), which is serviced by some app but is much more specific. For instance, when an

email app is shown as an option for sharing, the best it can do is create a new message with no

particular recipients. A quicklink, however, can identify specific email addresses, say, for a person or

persons you email frequently. The quicklink, then, is essentially an app plus specific configuration

information.

Whatever the case, some app is launched when the user selects a target. With the Share contract,

the app is launched with an activationKind of shareTarget. This tells it not to bring up its default UI

but to rather show a specific share pane (with light-dismiss behavior) in which the user can refine

exactly what is being shared and how. A share target for a social network, for instance, will often

provide a place to add a comment on the shared data before posting it to the social network. An email

app would provide a means to edit the message before sending it. A front-end app for a photo service

could allow for adding a caption, specifying a location, identifying people, and so on. You get the idea.

All of this combines together to provide a smooth flow from having something to share to an app that

473

facilitates the sharing.

Overall, then, the Share contract gets apps connected to one another for this common purpose

without either one having to know anything about the other. This creates a very extensible and

scalable experience: since all the potential target choices appear only in the Share charm pane, they

never need to clutter a source app as we see happening on many web pages. (This is the “content

before chrome” design principle in action.) Source apps also don’t need to update themselves when a

new target becomes popular (e.g., a new kind of social network): all that’s needed is a single target

app. As for those target apps, they don’t have to evangelize themselves to the world: through the

contract, source apps are automatically able to use any target apps that come along in the future. And

from the end user’s point of view, their experience of the Share charm gets better and better as they

acquire more Share-capable apps.

At the same time, it is possible for the source app to know something about how its shared data is

being used. Alongside the datarequested event, the DataTransferManager also fires a

targetApplicationChosen event to those sources who are listening. The eventArgs in this case

contain only a single property: applicationName. This isn’t really useful for any other WinRT APIs, mind

you, but is something you can tally within your own analytics. Such data can help you understand

whether you’d provide a better user experience by sharing richer data formats, for example, or, if you

see that certain target apps also support particular custom formats, you can start supporting those in a

future update.

Source Apps
Let’s complete our understanding of source apps now by looking at a number of details we haven’t

fully explored yet, primarily around how the source populates the data package and the options it has

for handling the request. For this purpose, I suggest you obtain and run both the Sharing content

source app sample and the Sharing content target app sample. We’ll be looking at both of these, and

the latter provides a helpful way to see how a target app will consume the data package created in the

source.

The source app sample provides a number of scenarios that demonstrate how to share different

types of data. They also show how to programmatically invoke the Share charm with the following line

of code (if it really fits in your app scenario, because doing so is generally not recommended):

Windows.ApplicationModel.DataTransfer.DataTransferManager.showShareUI();

Doing so will, as when the user invokes the charm, trigger the datarequested event where

eventArgs.request object is a Windows.ApplicationModel.DataTransfer.DataRequest object. This

request object contains two properties and two methods:

 data is the DataPackage to populate. It contains methods to set make various data

formats available, though it’s important to note that not all formats will be immediately

rendered. Instead, they’re rendered only when a share target asks for them.

474

http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.datarequest.aspx

 deadline is a Date property indicating the time in the future when the data you’re

making available will no longer be valid (that is, will not render). This recognizes that

there might be an indeterminate amount of time between when the source app is

asked for data and when the target actually tries to use it. With delayed rendering, as

noted above for the data property, it’s possible that some transient source data might

disappear after some time. By indicating that time in deadline, rendering requests that

occur past the deadline will be ignored.

 failWithDisplayText is a method to tell the share broker that sharing isn’t possible

right now, along with a string that will tell the user why (perhaps the lack of a usable

selection). You call this when you don’t have appropriate data formats or an

appropriate selection to share, or if there’s an error in populating the data package for

whatever reason. The text you provide will then be displayed in the Share charm (and

thus should be localized). Scenario 8 of the source app sample shows the use of this in

the simple case when you have no sharable data when Share is invoked.

 getDeferral provides for async operations you might need to perform while

populating the data package (just like other deferrals elsewhere in the WinRT API), and

should also be used if you need more than 200ms in the handler (its timeout period).

That is, once you return from the datarequested event, the share broker normally

assumes that your data package is ready. If you need to wait for an async operation to

complete, on the other hand, you can call getDeferral to obtain a DataRequest-

Deferral object, whose complete method you call within the completed handler of the

async operation.

The basic structure of a datarequested handler, then, will attempt to populate the minimal

properties of eventArgs.request.data and call eventArgs.request.failWithDisplayText when

errors occur. We see this structure in most of the scenarios in the sample:

var dataTransferManager =

 Windows.ApplicationModel.DataTransfer.DataTransferManager.getForCurrentView();

dataTransferManager.addEventListener("datarequested", dataRequested);

function dataRequested(e) {

 var request = e.request;

 // Title is required

 var dataPackageTitle = document.getElementById("titleInputBox").value;

 if (/* Check if there is appropriate data to share */) {

 request.data.properties.title = dataPackageTitle;

 // The description is optional.

 var dataPackageDescription = document.getElementById("descriptionInputBox").value;

 request.data.properties.description = dataPackageDescription;

 // Call request.data.setText, setUri, setBitmap, setData, etc.

 } else {

475

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.datarequestdeferral.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.datarequestdeferral.aspx

 request.failWithDisplayText(/* Error message */);

 }

}

As we see here, the data.properties object (of type DataPackagePropertySet) is where you set

things like a title and description for the data package. Other properties are applicationListingUri

(the URI of your app’s page in the Windows Store, which should be set to the return value of

Windows.ApplicationModel.Store.CurrentApp.linkUri57), applicationName (a string, which helps

share targets gather the same kind of information that the source can obtain from the

targetApplicationChosen event), fileTypes (a string vector, where strings should come from the

StandardDataFormats enumeration but can also be custom formats), size (the number of items when

the data in the package is a collection [e.g., files]), and thumbnail (a stream containing a thumbnail

image; obtaining this image is typically why you’d use the DataRequest.getDeferral method).

Beyond this the data.properties object also supports custom properties through its insert, remove,

and other methods. This makes is possible for the source app to pass custom properties along with

custom formats, making all of this extensible if new data formats are widely adopted in the future.

Within this code structure above, the primary job of the source app is to populate the data package

by calling the package’s various set* methods. For standard formats, which are again those described

in the StandardDataFormats enumeration, there are discrete methods: setText, setUri,

setHtmlFormat, setRtf (rich text format, a comparably ancient precursor to HTML), setBitmap, and

setStorageItems (for files and folders). All of these except for setRtf are represented in the source

app sample as follows:

Sharing text—Scenario 1 (js/text.js):

var dataPackageText = document.getElementById("textInputBox").value;

request.data.setText(dataPackageText);

Sharing a link—Scenario 2 (js/link.js), which can be used for local and remote content alike:

request.data.setUri(new Windows.Foundation.Uri(document.getElementById("linkInputBox").value));

Sharing an image and a storage item—Scenario 3 (js/image.js):

var imageFile; // A StorageFile obtained through the file picker

// In the data requested event

var streamReference = Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(imageFile);

request.data.properties.thumbnail = streamReference;

// It's recommended to always use both setBitmap and setStorageItems for sharing a single image

// since the Target app may only support one or the other

57 This URI along the applicationName would allow a target to indicate where the data originally came from, especially for

scenarios where the data goes to a social network, in an email message, or elsewhere off the device with the source app.

This way, recipients can be invited to acquire the source app themselves, so source apps will probably want to include it.

You always want to use the Windows.ApplicationModel.Store.CurrentApp.linkUri property to populate this field

because you won’t know your URI until your completed app is uploaded to the Store the first time.

476

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.datapackagepropertyset.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.store.currentapp.linkuri.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.standarddataformats.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.standarddataformats.aspx

// Put the image file in an array and pass it to setStorageItems

request.data.setStorageItems([imageFile]);

// The setBitmap method requires a RandomAccessStreamReference

request.data.setBitmap(streamReference);

Sharing files—Scenario 4 (js/file.js):

var selectedFiles; // A collection of StorageFile objects obtained through the file picker

// In the data requested event

request.data.setStorageItems(selectedFiles);

As for sharing HTML, this can be quite simple if you just have HTML in a string:

request.data.setHtmlFormat(someHtml);

For this purpose you might find the

Windows.ApplicationModel.DataTransfer.HtmlFormatHelper object, well, helpful, as it provide

methods to help build properly formatted markup. What’s also true with HTML is that it often refers to

other content like images that aren’t directly contained in the markup. So how do you handle that?

Fortunately, the designers of this API thought through the scenario: you employ the data package’s

resourceMap property to associate relative URIs in the HTML with an image stream. We see this in

Scenario 6 of the sample (hs/html.js):

var path = document.getElementById("htmlFragmentImage").getAttribute("src");

var imageUri = new Windows.Foundation.Uri(path);

var streamReference = Windows.Storage.Streams.RandomAccessStreamReference.createFromUri(imageUri);

request.data.resourceMap[path] = streamReference;

The other interesting part of Scenario 6 is that it actually replaces the data package in the

eventArgs with a new one that is creates as follows:

var range = document.createRange();

range.selectNode(document.getElementById("htmlFragment"));

request.data = MSApp.createDataPackage(range);

As you can see, the MSApp.createDataPackage method takes a DOM range (in this case a portion

of the current page) and creates a data package from it, where the package’s setHtmlFormat method

is called in the process (which is why you don’t see that method called explicitly in Scenario 6). For

what it’s worth, there is also MSApp.createDataPackageFromSelection that does the same job with

whatever is currently selected in the DOM. You would obviously use this if you have editable elements

on your page from which you’d like to share.

Sharing Multiple Data Formats

As shown in Scenario 3, it is certainly allowable—and encouraged!—to share data in as many formats as

makes sense, thereby enabling more potential targets. All this means is that you call the various set*

methods for each format within your datarequested handler, which also includes calling setData for

477

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.htmlformathelper.createhtmlformat.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/Hh831247.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh831248.aspx

custom formats and setDataProvider for deferred rendering, as described in the next two sections.

Custom Data Formats: schema.org

Long ago, I imagine, API designers decided it was an exercise in futility to try to predict every data

format that apps might want to exchange in the future. The WinRT API is no different, so alongside the

format-specific set* methods of the DataPackage we find the generic setData method. This takes a

format identifier (a string) and the data to share as is illustrated in Scenario 7 of the sample using the

format “http://schema.org/Book” and data in a JSON string:

request.data.setData(dataFormat, JSON.stringify(book));

Since the custom format identifier is just a string, you can literally use anything you want here; a

very specific format string might be useful, for example, in a sharing scenario where you want to target

a very specific app, perhaps one that you authored yourself. However, unless you’re very good at

evangelizing your custom formats to the rest of the developer community (and want to budget for

such!), chances are that other share targets won’t have any clue what you’re talking about.

Fortunately, there is a growing body of conventions for custom data formats maintained by

http://schema.org. This site is, in other words, the point of agreement where custom formats are

concerned, so we highly recommend that you draw formats from here. See

http://schema.org/docs/schemas.html for a complete list.

You can also use these custom formats alongside standard formats. Take a look at the JSON book

data used in the sample:

var book = {

 type: "http://schema.org/Book",

 properties: {

 image: "http://sourceuri.com/catcher-in-the-rye-book-cover.jpg",

 name: "The Catcher in the Rye",

 bookFormat: "http://schema.org/Paperback",

 author: "http://sourceuri.com/author/jd_salinger.html",

 numberOfPages: 224,

 publisher: "Little, Brown, and Company",

 datePublished: "1991-05-01",

 inLanguage: "English",

 isbn: "0316769487"

 }

};

You can easily express this same data as plain text, as HTML (or RTF), as a link (perhaps to a page

with this information), and an image (of the book cover).

Deferrals and Delayed Rendering

Deferrals, as mentioned before are a simple mechanism to delay completion of the datarequested

event until the deferral’s complete method is called. The documentation for

DataRequest.getDeferral shows an example of using this when loading an image file:

478

http://schema.org/
http://schema.org/docs/schemas.html
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.datarequest.getdeferral.aspx

var deferral = request.getDeferral();

Windows.ApplicationModel.Package.current.installedLocation.getFileAsync("images\\smalllogo.png")

 .then(function (thumbnailFile) {

 request.data.properties.thumbnail =

 Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(thumbnailFile);

 return Windows.ApplicationModel.Package.current.installedLocation.getFileAsync(

 "images\\logo.png");

 })

 .done(function (imageFile) {

 request.data.setBitmap(

 Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(imageFile));

 deferral.complete();

 });

Delayed rendering is a different matter, though the process typically employs the deferral. The

purpose here is to avoid rendering the shared data until a target actually requires it, sometimes

referred to as a pull operation. That is, all the other set* methods we’ve seen copy the full data into the

package—with delayed rendering, you instead call the data package’s setDataProvider method with

a data format identifier and a function to call when the data is needed. Here’s how it’s done in Scenario

5 of the source app sample where imageFile is selected with a file picker:

// When sharing an image, don't forget to set the thumbnail for the DataPackage

var streamReference = Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(imageFile);

request.data.properties.thumbnail = streamReference;

request.data.setDataProvider(Windows.ApplicationModel.DataTransfer.StandardDataFormats.bitmap,

 onDeferredImageRequested);

As indicated here, it’s a really good idea to provide a thumbnail with delayed rendering, so the

target app has something to show the user. Then, when the target needs the full data, the data

provider function gets called—in this case, onDeferredImageRequsted:

function onDeferredImageRequested(request) {

 if (imageFile) {

 // Here we provide updated Bitmap data using delayed rendering

 var deferral = request.getDeferral();

 var imageDecoder, inMemoryStream;

 imageFile.openAsync(Windows.Storage.FileAccessMode.read).then(function (stream) {

 // Decode the image

 return Windows.Graphics.Imaging.BitmapDecoder.createAsync(stream);

 }).then(function (decoder) {

 // Re-encode the image at 50% width and height

 inMemoryStream = new Windows.Storage.Streams.InMemoryRandomAccessStream();

 imageDecoder = decoder;

 return Windows.Graphics.Imaging.BitmapEncoder.createForTranscodingAsync(

 inMemoryStream, decoder);

 }).then(function (encoder) {

 encoder.bitmapTransform.scaledWidth = imageDecoder.orientedPixelWidth * 0.5;

 encoder.bitmapTransform.scaledHeight = imageDecoder.orientedPixelHeight * 0.5;

 return encoder.flushAsync();

 }).done(function () {

479

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.setdataprovider.aspx

 var streamReference = Windows.Storage.Streams.RandomAccessStreamReference

 .createFromStream(inMemoryStream);

 request.setData(streamReference);

 deferral.complete();

 }, function (e) {

 // didn't succeed, but we still need to release the deferral to avoid

 //a hang in the target app

 deferral.complete();

 });

 }

}

Note that this function receives a simplified hybrid of the DataRequest and DataPackage objects: a

DataProviderRequest that contains deadline and formatId properties, a getDeferral method, and a

setData method through which you provide the data that matched formatId. The deadline property,

as you can guess, is the same as what the datarequested handler might have stored in the

DataRequest object.

Target Apps
Looking back to Figure 12-1, we can see that while the interaction between a source app and the share

broker is driven by the single datarequested event, the interaction between the broker and a target

app is a little more involved. For one, the broker needs to determine which apps can potentially handle

a particular data package, for which purpose each target app includes appropriate details in its

manifest. When an app is selected, it gets launched with an activationKind of shareTarget, in

response to which it should show a specific share UI rather than the full app experience.

Let’s see how all this works with the Sharing content target app sample whose appearance is shown

in Figure 12-2 (borrowing from Figure 2-22 we saw ages ago). Be sure to directly run this app once in

Visual Studio so that it’s effectively installed and it will appear on the list of apps when we invoke the

Share charm. We’ll also be using the Share Contract Target item template in the tools.

480

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.dataproviderrequest.aspx
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782

FIGURE 12-2 The appearance of the Share Target app sample (the right-hand nonfaded part).

The first step for a share target is to declare the data formats it can accept in the Declarations

section of the app manifest, along with the page that will be invoked when the app is selected as a

target. As shown in Figure 12-3, the target app sample declares it can handle text, URI, bitmap, html,

and the http://schema.org/Book formats, and it also declares it can handle whatever files might be in a

data package (you can also be specific here). Way down at the bottom it then points to target.html as

its Share target page.

481

http://schema.org/Book

FIGURE 12-3 The Share target app sample’s manifest declarations.

The Share start page, target.html, is just a typical HTML page with whatever layout you require for

performing the share task. This page typically operates independently of your main app: when your

app is chosen through Share, this page is loaded and activated by itself and thus has an entirely

separate script context. This page should not provide navigation to other parts of the app and should

thus load only whatever code is necessary for the sharing task. (The Executable and Entry Point options

are not used for apps written in HTML and JavaScript; those exist for apps written in other languages.)

Much of this structure is built for you automatically through the Share Target Contract item

template provided by Visual Studio and Blend, as shown in Figure 12-4; the dialog appears when you

right-click your project and select Add > New Item, or select the Project > Add New Item… menu

command.

482

FIGURE 12-4 The Share Target Contract item template in Visual Studio and Blend.

This item template will give you HTML, JS, and CSS files for the share target page and will add that

page to your manifest declarations along with text and URI formats—so you’ll want to update those as

needed.

Before we jump into the code, a few notes about the design of a share target page, summarized

from Guidelines for sharing content:

 Maintain the app’s identity and its look and feel, consistent with the primary app

experience.

 Keep interactions simple to quickly complete the share flow: avoid text formatting,

tagging, and setup tasks, but do consider providing editing capabilities especially if

posting to social networks or sending in a message. (See Figure 12-5 from the Mail app

for an example.) A social networking target app would generally want to include the

ability to add comments as well; a photo-sharing target would probably include the

ability to add captions.

 Avoid navigation: sharing is a specific task flow, so use inline controls and errors instead

of switching to other pages. Another reason to avoid this is that the share page of the

target app typically runs in its own script context, so being able to navigate elsewhere

in the app within a separate context could be very confusing to users.

 Avoid links that would distract from or take the user away from the sharing experience.

Remember that sharing is a way to shortcut the oft-tedious process of getting data

from one app to another, so keep the target app focused on that purpose.

 Avoid light-dismiss flyouts since the Share charm already works that way.

 Acknowledge user actions when you start sending the data off (to an online service, for

example) so that users know something is actually happening.

 Put important buttons within reach of the thumbs on a touch device; refer to Windows

8 Touch Posture topic in the documentation for placement guidance.

 Make previews match the actual content—in other words, don’t play tricks on the user!

With this page design, it’s good to know that you do not need to worry about different view

states—this page really just has one state. It does need to adapt itself well to varying dimensions, mind

you, but not different view states. Basing the layout on a CSS grid with fractional rows and columns is a

good approach here.

483

http://msdn.microsoft.com/en-us/library/windows/apps/hh465251.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx#touch_posture
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx#touch_posture

FIGURE 12-5 The sharing UI of the Windows Mail app (the bottom blank portion has been cropped); this UI allows

editing of the recipient, subject, and message boxy, and allows for sending an image as an attachment or as a link

to SkyDrive.

Caution Because a target app can receive data from any source app, it should treat all such content as

untrusted and potentially malicious, especially with HTML, URIs, and files. As a result, the target app

should avoid adding such HTML or file contents to the DOM, executing code from URIs, navigating to

the URI or some other page based on the URI, modifying database records, using eval with the data,

and so on.

Let’s now look at the contents of the template’s JavaScript file as a whole, because it shows us the

basics of being a target. First, as you can see, we have the same structure as a typical default.js for the

app, using the WinJS.Application object’s methods and events.

(function () {

 "use strict";

 var app = WinJS.Application;

 var share;

 function onShareSubmit() {

 document.querySelector(".progressindicators").style.visibility = "visible";

 document.querySelector(".commentbox").disabled = true;

 document.querySelector(".submitbutton").disabled = true;

 // TODO: Do something with the shared data stored in the 'share' var.

 share.reportCompleted();

 }

 // This function responds to all application activations.

 app.onactivated = function (args) {

 var thumbnail;

 if (args.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.shareTarget) {

484

 document.querySelector(".submitbutton").onclick = onShareSubmit;

 share = args.detail.shareOperation;

 document.querySelector(".shared-title").textContent = share.data.properties.title;

 document.querySelector(".shared-description").textContent =

 share.data.properties.description;

 thumbnail = share.data.properties.thumbnail;

 if (thumbnail) {

 // If the share data includes a thumbnail, display it.

 args.setPromise(thumbnail.openReadAsync().then(function displayThumbnail(stream) {

 document.querySelector(".shared-thumbnail").src =

 window.URL.createObjectURL(stream, { oneTimeOnly: true });

 }));

 } else {

 // If no thumbnail is present, expand the description and

 // title elements to fill the unused space.

 document.querySelector("section[role=main] header").style

 .setProperty("-ms-grid-columns", "0px 0px 1fr");

 document.querySelector(".shared-thumbnail").style.visibility = "hidden";

 }

 }

 };

 app.start();

})();

When this page is loaded and activated (during which time the app’s splash screen will appear), its

WinJS.Application.onactivated event will fire—again independently of your app’s main activated

handler that’s typically in default.js. As a share target you just want to make sure that the

activationKind is shareTarget, after which your primary responsibility is to provide a preview of the

data you’ll be sharing along with whatever UI you have to edit it, comment on it, and so forth.

Typically, you’ll also have a button to complete or submit the sharing, during which you tell the share

broker that you’ve completed the process.

The key here is the args.detail.shareOperation object provided to the activated handler. This is

a Windows.ApplicationModel.DataTransfer.ShareTarget.ShareOperation object, whose data

property contains a read-only package called a DataPackageView from which you obtain all the goods:

 To check whether the package formats you can consume, use the contains method or

the availableFormats collection.

 To obtain data from the package, use its get* methods such as getTextAsync,

getBitmapAsync, and getDataAsync (for custom formats). When pasting HTML you can

also use the getResourceMapAsync method to get relative resource URIs. The view’s

properties like the thumbnail are also useful to provide a preview of the data.

As you can see, the Share target item template code above doesn’t do anything with shared data

other than display the title, description, and thumbnail; clearly your app will do something more by

485

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.sharetarget.shareoperation.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.datapackageview.aspx

requesting data from the package, like the examples we see in the Share target app sample. Its target.js

file contains an activated handler for the target.html page, and it also displays the thumbnail in the

data package by default. It then looks for different data formats and displays those contents if they

exist:

if (shareOperation.data.contains(Windows.ApplicationModel.DataTransfer.StandardDataFormats.text)) {

 shareOperation.data.getTextAsync().done(function (text) {

 displayContent("Text: ", text, false);

 });

}

The same kind of code appears for the simpler formats. Consuming a bitmap is a little more work

but straightforward:

if (shareOperation.data.contains(Windows.ApplicationModel.DataTransfer.StandardDataFormats.bitmap)) {

 shareOperation.data.getBitmapAsync().done(function (bitmapStreamReference) {

 bitmapStreamReference.openReadAsync().done(function (bitmapStream) {

 if (bitmapStream) {

 var blob = MSApp.createBlobFromRandomAccessStream(bitmapStream.contentType,

 bitmapStream);

 document.getElementById("imageHolder").src = URL.createObjectURL(blob,

 { oneTimeOnly: true });

 document.getElementById("imageArea").className = "unhidden";

 }

 });

 });

}

For HTML, it looks through the markup for img elements and then sets up their src attributes from

the resource map (the iframe already has the HTML content from the package by this time):

var images = iFrame.contentDocument.documentElement.getElementsByTagName("img");

if (images.length > 0) {

 shareOperation.data.getResourceMapAsync().done(function (resourceMap) {

 if (resourceMap.size > 0) {

 for (var i = 0, len = images.length; i < len; i++) {

 var streamReference = resourceMap[images[i].getAttribute("src")];

 if (streamReference) {

 // Call a helper function to map the image element's src

 // to a corresponding blob URL generated from the streamReference

 setResourceMapURL(streamReference, images[i]);

 }

 }

 }

 });

}

The setResourceMapURL helper function does pretty much what the bitmap-specific code did,

which is call openReadAsync on the stream, call MSApp.createBlobFromRandomAccessStream, pass that

blob to URL.createObjectURL, and set the img.src with the result.

After the target app has completed a sharing operation, it should call the ShareOperation.report-

486

Completed method, as shown earlier with the template code. This lets the system know that the data

package has been consumed, the share flow is complete, and all related resources can be released. The

Share target sample does this when you explicitly click a button for this purpose, but normally you

should call the method whenever you’ve completed the share. Do be aware that calling

reportCompleted will close the target app’s sharing UI, so avoid calling it as soon as the target

activates: you want the user to feel confident that the operation was carried out.

Long-Running Operations

When you run the Share target sample and invoke the Share charm from a suitable source app, there’s

a little expansion control near the bottom labeled “Long-running Share support.” If you expand that,

you’ll see some additional controls and a bunch of descriptive text, as shown in Figure 12-6. The

buttons shown here tie into a number of other methods on the ShareOperation object alongside

reportCompleted that help Windows understand exactly how the share operation is happening within

the target: reportStarted, reportDataRetrieved, reportSubmittedBackgroundTask, and

reportError. As you can see from the descriptions in Figure 12-6, these generally relate to telling

Windows when the target app has finished cooking its meal and the system can clean the dishes and

put away the utensils, so to speak:

 reportStarted informs Windows that your sharing operation might take a while, as if

you’re uploading the data from the package to another place, or just sending an email

attachment with what ends up being large images and such. This specific indicates that

you’re obtained user input such that the share pane can be dismissed.

 reportDataRetrieved informs Windows that you’ve extracted what you need from the

data package such that it can be released. If you’ve called

MSApp.createBlobFromRandomAccessStream for an image stream, for example, the

blob now contains a copy of the image that’s local to the target app. If you’re using

images from the package’s resourceMap, on the other hand, you’ll not want to call

reportDataRetrieved unless you explicitly make a copy of those references whose

URIs refer to bits inside the data package. In any case, if you need to hold onto the

package throughout the operation, you don’t need to call this method as you’ll later

call reportCompleted to release the package.

 reportSubmittedBackgroundTask tells Windows that you’ve started a background

transfer using the Windows.Networking.BackgroundTransfer.BackgroundUploader

class. As the sample description in Figure 12-6 indicates, this lets Windows know that it

can suspend the target app and not disturb the sharing operation. If you call this

method with a local copy of the data being uploaded, go ahead and call

reportCompleted method so that Windows can clean up the package; otherwise wait

until the transfer is complete.

 reportError lets Windows know if there’s been an error during the sharing operation.

487

http://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.aspx

FIGURE 12-6 Expanded controls in the Share target sample for Long-Running Share Support. The Report

Completed button is always shown and isn’t specific to long-running tasks despite its placement in the sample’s UI.

Don’t let that confuse you!

Quicklinks

The last aspect of the Share contract for us to explore is something we mentioned early on in this

section: quicklinks. Just like doing online check-in before an airplane flight, the purpose of these is to

streamline the Share process such that users don’t need to re-enter information in a target app. For

example, if a user commonly shares data with particular people through email, each contact can be a

quicklink for the email app. If a user commonly shares with different people or groups through a social

networking app, those people and/or groups can be represented with quicklinks. And as these targets

are much more user-specific than target apps in general, the Share charm UI shows these at the top of

its list (see Figure 12-7 below).

Each quicklink is associated with and serviced by a particular target app and simply provides an

identifier to that target. When the target is invoked through a quicklink, it then uses that identifier to

retrieve whatever data is associated with that quicklink and prepopulate or otherwise configure its UI.

It’s important to understand that quicklinks contain only an identifier, so the target app must store and

488

retrieve the associated data from some other source, typically local app data where the identifier is a

filename, the name of a settings container, or so forth. The target app could also use roaming app data

or the cloud for this purpose, but quicklinks themselves do not roam to another device—they are

strictly local. Thus, it makes the most sense to store the associated data locally as well.

A quicklink itself is just an instance of the Windows.ApplicationModel.DataTransfer.Quicklink

class. You create one with the new operator and then populate its title, thumbnail,

supportDataFormats, supportedFileTypes, and id properties. The data formats and file types are

what Windows uses to determine if this quicklink should be shown in the list of targets for whatever

data is being shared from a source app (independent of the app’s manifest declarations). The title

and thumbnail are used to display that choice in the Share charm, and the id is what gets passed to

the target app when the quicklink is chosen.

Tip For the thumbnail, use an image that’s more specifically representative of the quicklink (such as a

contact photo) rather than just the target app. This helps distinguish the quicklink from the general

use of the target app.

An app then registers a quicklink with the system by passing it to the

ShareOperation.reportCompleted method. As this is the only way in which a quicklink is registered, it

really tells us that creating a quicklink always happens as part of another sharing operation. It’s a way

to create a specific target that might save the user time and encourage them to choose your target

app again in the future.

Let’s follow the process within the Share target app sample to see how this all works. First, when you

invoke the Share charm and choose the sample, you’ll see that it provides a check box for creating a

quicklink, as shown in Figure 12-7. When you check this, it provide fields in which you can enter an id

and a title (the thumbnail just uses a default image). When you press the Report Completed button, it

calls reportCompleted and the quicklink is registered. On subsequent invocations of the Share charm

with the appropriate data formats from the source app, this quicklink will then appear in the list, as

shown in Figure 12-8 where the app that services the quicklink is always indicated under the provided

title.

489

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.sharetarget.quicklink.aspx

FIGURE 12-7 Controls to create a quicklink in the Share target app sample.

FIGURE 12-8 A quicklink from the Share target app sample as it appears in the Share charm target list.

Here’s how the Share target app sample creates the quicklink within the function reportCompleted

(js/target.js) that’s called when you click the Report Completed button (some error checking omitted):

if (addQuickLink) {

 var quickLink = new Windows.ApplicationModel.DataTransfer.ShareTarget.QuickLink();

 var quickLinkId = document.getElementById("quickLinkId").value;

 quickLink.id = quickLinkId;

 var quickLinkTitle = document.getElementById("quickLinkTitle").value;

 quickLink.title = quickLinkTitle;

 // For quicklinks, the supported FileTypes and DataFormats are set independently

490

 // from the manifest

 var dataFormats = Windows.ApplicationModel.DataTransfer.StandardDataFormats;

 quickLink.supportedFileTypes.replaceAll(["*"]);

 quickLink.supportedDataFormats.replaceAll([dataFormats.text, dataFormats.uri, dataFormats.bitmap,

 dataFormats.storageItems, dataFormats.html, customFormatName]);

 // Prepare the icon for a QuickLink

 Windows.ApplicationModel.Package.current.installedLocation.getFileAsync("images\\user.png")

 .done(function (iconFile) {

 quickLink.thumbnail = Windows.Storage.Streams.RandomAccessStreamReference

 .createFromFile(iconFile);

 shareOperation.reportCompleted(quickLink);

 });

Again, the process is just to create the Quicklink object, set its properties (perhaps settings a more

specific thumbnail such as a contact person’s picture), and pass it to reportCompleted. In the Share

target app sample, you can see that it doesn’t actually store any other local app data; for its purposes

the properties in the quicklink are sufficient. Most target apps, however, will likely save some app data

for the quicklink that’s associated with the quicklink.id property and reload that data when activated

later on through the quicklink.

When the app is activated in this way, the eventArgs.detail.shareOperation object within the

activated event handler will contain the quicklinkId. The Source target app simply displays this id,

but your would certainly use it to load app data and prepopulate your share UI:

// If this app was activated via a QuickLink, display the QuickLinkId

if (shareOperation.quickLinkId !== "") {

 document.getElementById("selectedQuickLinkId").innerText = shareOperation.quickLinkId;

 document.getElementById("quickLinkArea").className = "hidden";

}

Note the one detail here that when the target app is invoked through a quicklink, it doesn’t display

the same UI to create a quicklink, because doing so would be redundant. However, if the user edited

the information related to the quicklink, you might provide the ability to update the quicklink

(meaning to update the data you save related to the id) or to create a new quicklink (with a new id).

The Clipboard
Well before the Share contract was ever conceived, the mechanism we know as the Clipboard was once

the poster child of app-to-app cooperation. And while it may not garner any media attention

nowadays, it’s still a tried-and-true means for apps to share and consume data.

For Windows 8 apps, clipboard interactions build on the same DataPackage mechanisms we’ve

already seen for sharing, so everything we’ve learned about populating that package, using custom

formats, and using delayed rendering still apply. Indeed, if you make data available on the clipboard,

you should make sure the same data is available for the Share contract!

The question now is how to wire up commands like copy, cut, and paste—from the app bar, a

context menu, or keystrokes—should an app provide them for its own content (many controls handle

491

the clipboard automatically). For this we turn to the

Windows.ApplicationMode.DataTransfer.Clipboard class.

As demonstrated in the Clipboard app sample, the processes here are straightforward. For copy and

cut:

 Create a new Windows.ApplicationModel.DataTransfer.DataPackage (or use

MSApp.createDataPackage or MSApp.createDataPackageFromSelection), and

populate it with the desired data.

var dataPackage = new Windows.ApplicationModel.DataTransfer.DataPackage();

dataPackage.setText(textValue);

//...

 (Optional) Set the package’s requestedOperation property to values from

DataPackageOperation: copy, move, link, or none (the latter is used with delayed

rendering). Note that these values can be combined using the bitwise OR operator, as

in:

var dpo = Windows.ApplicationModel.DataTransfer.DataPackageOperation;

dataPackage.requestedOperation = dpo.copy | dpo.move | dpo.link;

 Pass the data package to

Windows.ApplicationMode.DataTransfer.Clipboard.setContent:

Windows.ApplicationModel.DataTransfer.Clipboard.setContent(dataPackage);

To perform a paste:

 Call Windows.ApplicationMode.DataTransfer.Clipboard.getContent to obtain a

read-only data package called a DataPackageView:

var dataView = Windows.ApplicationModel.DataTransfer.Clipboard.getContent();

 Check whether it contains formats you can consume with the contains method

(alternately, you can check the contents of the availableFormats vector):

if (dataView.contains(Windows.ApplicationModel.DataTransfer.StandardDataFormats.text)) {

 //...

}

 Obtain data using the view’s get* methods such as getTextAsync, getBitmapAsync,

and getDataAsync (for custom formats). When pasting HTML, you can also use the

getResourceMapAsync method to get relative resource URIs. The view’s properties like

the thumbnail are also useful, along with the requestedOperation value or values.

dataView.getTextAsync().done(function (text) {

 // Consume the data

}

If at any time you want to clear the clipboard contents, call the Clipboard class’s clear method.

492

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.clipboard.aspx
http://go.microsoft.com/fwlink/?LinkId=231653
http://go.microsoft.com/fwlink/?LinkId=231653
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.datapackageoperation.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.datatransfer.datapackageview.aspx

You can also make sure data is available to other apps even if yours is shut down by calling the flush

method (which will trigger any deferred rendering you might have set up).

Apps that use the clipboard also need to know when to enable to disable a paste command

depending on available formats. At any time you can get the data package view from the clipboard

and use its contains method or availableFormats property and decide accordingly. You should also

then listen to the Clipboard object’s contentChanged event, which will be fired when you or some

other app calls its setContent method, at which time you’d again enable or disable the commands. Of

course, you won’t receive this event when your app is suspended, so you should refresh the state of

those commands within your resuming handler.

Again, the Clipboard app sample provides example of these various scenarios, including copy/paste

of text and HTML (Scenario 1); copy and paste of an image (Scenario 2); copy and paste of files

(Scenario 3); and clearing the clipboard, enumerating formats, and handling contentChanged (Scenario

4).

Note, finally, that pasted data can come from anywhere. Apps that consume data from the

clipboard should, like a share target, treat the content they receive as potentially malicious and take

appropriate precautions.

Search

Search has become such a ubiquitous feature for apps that the designers of Windows 8 decided to

provide a system-level keyword search UI (with built-in Input Method Editor support) directly

alongside Share, Devices, and Settings in the charms bar, as shown in Figure 12-9. This means that apps

don’t need to (and generally shouldn’t) provide their own UI controls to perform a search, and by

participating in this contract, the user can not only easily search the app that’s in the foreground but

also quickly and easily search within other apps without having to go off and start those apps

separately. It also means that users never need to explicitly start your app to search within it. Simply by

changing the search target within the search pane, that target app is launched and asked to perform a

search with the current keywords. This is also what makes Search work even if the current foreground

app doesn’t support the contract at all—the search target just defaults to the first app in the list.

493

FIGURE 12-9 The Search pane invoked through the Search charm, with results shown in the Games app and the

Photos app. As with Share, the user can control which apps are shown through Change PC Settings > Search. That

same settings panel also allows the user to clear search history and control a few other aspects of the UI.

The Search contract that makes this happen is composed of a set of interactions between the

Windows-provided Search UI and the search target app. (In this section, when I refer to a target app,

I’m referring now to search, not share.) This interaction communicates the keywords (even if empty) to

the app when the user presses Enter, clicks the icon to the right of the entry field, or changes apps. The

interaction also allows the target app to provide suggested search terms, as well as suggested results

(with result-specific graphics) that appear in the search pane directly, as shown in Figure 12-10.

494

FIGURE 12-10 Suggested searches (left) and search results (right) from a target app appear directly in the search

pane.

Designwise, Search should work with whatever data the app manages, whether local or online (or

both); it’s really the primary means to search within everything that the app can access. For this reason,

Microsoft highly recommends that apps don’t provide their own search UI (which otherwise distracts

from the app’s content) unless it’s really all the app does and where it would need additional search

criteria up-front. Otherwise, it’s best to let the user first search through the charm and then perhaps

filter, sort, and otherwise organize the results within the app through on-canvas or app bar commands.

On the flip side, the Search charm is not intended for finding data within a page; that is, it is expected

that apps provide their own controls for essentially scanning and highlighting results that are already in

view (like the find function in browsers). Many details on such design questions can be found on

Guidelines for search.

Searching within an app effectively navigates the app to its search results page, as we see in Figure

12-9, and thus activates the app in the same script context as when it’s run normally. Again, if the app

needs to be launched to service the search contract, it will be launched directly into that page (we’ll see

this mechanism shortly). Tapping on a result then navigates the app directly to the details for that

result. Of course, if the app was already running (as is the case when Search was invoked on a running

app), the result page’s back button should navigate to whatever page the user was on when they

invoked Search. Even if the app is launched to service the Search charm, it’s helpful to provide the user

with a means to navigate to its home page, especially when there are no results from which to navigate

elsewhere.

Let’s now look at the basic search contract interaction, after which we’ll explore the richer aspects of

search suggestions, suggested results, and type to search.

495

http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx

Search in the App Manifest and the Search Item Template
An app’s life as a search target begins, as with other contracts, in the app manifest on the Declarations

tab, as shown in Figure 12-11.

FIGURE 12-11 The Search declarations page within Visual Studio; typically, the App settings properties are left

blanks in an HTML/JavaScript app.

Since search is not tied to any particular data format like share, all you really need to specify here is

a Start page, if in fact you want it to be separate from the rest of your app at all. Unlike the share

contract, search is much more integrated with in-app navigation: when the user taps a result on your

results page, you want to navigate to that page directly as if they’d tapped on the same item in some

other list. Similarly, if the user taps the back button in your results page, they should navigate to

whatever page they were on when the charm was first invoked. For this reason, then, activation via

search typically gets handled by through the app’s main activated event. We’ll get to that in the next

section.

An easy way to add the Search contract is through the Search contract item template in Visual

Studio and Blend. (You can see this listed in Figure 12-4 just above the Share target contract.) If you

right-click your project and select Add > New Item, or use the Project > Add New Item… menu

command, you can choose the Search Contract item in from the list of templates. This will add the

Search declaration in your app manifest and add three page control files (.html, .js. and .css file) for a

search results page. There’s not much exciting to show here visually because the template code very

much relies on there being some real data to work with. Nevertheless, the template gives you a great

structure to work from, including the recommended UI for providing filters and so forth. Some further

details can be found on Adding a Search Contract item template.

Basic Search and Search Activation
The most basic interaction with the Search contract is receiving a query when the app is already

running. This is a great example of how search really just triggers navigation in the app, rather than

loading a new page with a separate script context, as happens with share targets. To receive such a

query, you need only listen to the querysubmitted event of the

Windows.ApplicationModel.Search.SearchPane object. The exact code looks something like this

496

http://msdn.microsoft.com/en-us/library/windows/apps/hh923025.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.querysubmitted.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.aspx

where searchPageURI identifies the results page:

var searchPane = Windows.ApplicationModel.Search.SearchPane.getForCurrentView();

searchPane.onquerysubmitted = function (eventArgs) {

 WinJS.Navigation.navigate(searchPageURI, eventArgs);

};

The eventArgs object here will be a SearchPaneQuerySubmittedEventArgs that contains just two

properties: queryText (the contents of the text box in the search pane) and language (the BCP 47

language tag currently in used). In the code above, these are just passed to the

WinJS.Navigation.navigate method that passes them onto to the results page (whatever

searchPageURI contains). From there, that page will just process queryText appropriate to language

and populate the page contents with appropriate items. For this purpose an app typically uses a

ListView control, as you might expect for a variable-length results collection.

Through the same SearchPane object you can also set the placeholderText property with

whatever you’d like to have showing when the Search charm is invoked and the search box is empty. Its

show method also allows you to show the pane programmatically, its visible property and

visibilitychanged event will tell you its status, and its queryText property will give you the current

contents of the input control.

You can also listen for its querychanged event whose eventArgs will contain queryText and

language properties, as with querysubmitted, along with a linguisticDetails property that provides

details about text entered through an Input Method Editor (IME). This event is a precursor to

querySubmitted and is appropriate if you have logic you need to run outside of providing suggestions,

such as previewing results (the behavior you see on the start screen when searching for apps, also

known as word wheeling).

We’ll return to the other events of the SearchPane object in the sections that follow. Before that we

want to see how search affects app activation. Again, because a search results page is much more

closely integrated with an app’s typical operation, you usually leave the Start page field in the manifest

blank and let the activation happen through your default activated handler in the same script context

as when the app is run normally.

In this case the activationKind value in the event will be search, a case that you want to handle

separately from launch. To see this in action, let’s turn to the Search app contract sample, which I’ll just

refer to as the search sample since its given name is grammatically odd! Its activation code is found in

js/default.js—code that’s applicable to the entire app:

function activated(eventObject) {

 if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) {

 eventObject.setPromise(WinJS.UI.processAll().then(function () {

 var url = WinJS.Application.sessionState.lastUrl || scenarios[0].url;

 return WinJS.Navigation.navigate(url);

 }));

 } else if (eventObject.detail.kind ===

 Windows.ApplicationModel.Activation.ActivationKind.search) {

 eventObject.setPromise(WinJS.UI.processAll().then(function () {

497

http://msdn.microsoft.com/en-us/library/windows/apps/br225067.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpanequerychangedeventargs.aspx
http://code.msdn.microsoft.com/windowsapps/Search-app-contract-sample-118a92f5

 if (eventObject.detail.queryText === "") {

 // Navigate to your landing page since the user is pre-scoping to your app.

 } else {

 // Display results in UI for eventObject.detail.queryText and

 // eventObject.detail.language (that represents user's locale).

 }

 // Navigate to the first scenario since it handles search activation.

 var url = scenarios[0].url;

 return WinJS.Navigation.navigate(url, { searchDetails: eventObject.detail });

 }));

 }

}

In the search activation path, it’s clearly good to avoid any processing that isn’t needed by the

search page itself, but you still need to be prepared to navigate to other parts of the app when a result

is chosen. Also, if the app is being launched in response to a search, be sure to reload both general

settings as you would with a normal launch as well as session state when previousExecutionState is

terminated. This means, in fact, that the state of a results page is part of the app’s session state; you’ll

normally want to save the last search term as part of that state so that you can rehydrate the results

page when needed.

The sample doesn’t actually search any real data—it just outputs messages when certain events

happen. But you can test this activation path in a couple of ways. First, if the app isn’t running, invoke

the search charm, enter some query text, and then select the search sample. You’ll find that it ends up

on the page for Scenario 1 and shows the search term right away. This tells you that it processed the

activation and picked up the search term from eventObject.detail.queryText, as you can see in the

code above. (Look also at js/scenario1.js where it outputs the term in the page’s processed method.)

To step through the same code, set a breakpoint within the searchTarget case of the activated

handler and run the app in the Visual Studio debugger. Invoke the search charm, enter a query, select

some other app (which will do a search), and then switch back to the sample. You should hit your

breakpoint as the activated handler will be called with the activation kind of search.

When activated through search, be sure that the page gets fully processed with calls like WinJS.UI-

.processAll. (You don’t need to worry if the app is already running; processAll won’t do redundant

work.)

It is important when your app is activated—as with handling querysubmitted and/or querychanged

events—to note that the queryText might be empty. In this case you can show default results or

navigate to your home page if that’s more appropriate. See “Sidebar: Testing Search.”

Sidebar: Testing Search

A number of variations with the Search charm can affect how a search target app is launched

and with what parameters. To be sure that you’ve exercised all applicable code paths, be sure to

test these conditions:

498

 App is running and search is invoked with no query text, query text with known results, and

query text that returns no results.

 App is not running and is invoked from the search charm, with all the variations on text

listed above.

 App is in the snapped state and is invoked as above, in which case the app should unsnap.

 App is suspended and is invoked as above.

You should also be mindful of how you present results, taking care that the primary results

are not hidden by the Search pane, which will remain visible until the user dismisses it.

Sidebar: Synchronizing In-App Search with the Search Pane

Some types of apps will still maintain their own in-app search UI in addition to using the search

pane, or in other ways they might have some kind of search term that would be good to keep in

sync with the term shown in the search pane. To do this, the app can ask the search pane for its

queryText value and can attempt to set that value through the SearchPane.trySetQueryText

method. This call will fail, mind you, if the app isn’t itself visible or if the search pane is already

visible or becoming visible.

Providing Query Suggestions
Using querysubmitted and the activation sequence in the previous section gives you the basic level of

search interaction, and Windows will automatically provide a history of the user’s recent searches. Still,

with just a little more work you can make the experience much richer. Because writing the code to

actually perform the search, process the results, and display them beautifully is the bulk of the work

with the Search contract anyway, adding support for query suggestions (this section) and result

suggestions (in the next section) is a relatively small investment with a huge impact on the overall user

experience.

To go beyond the default search history and provide as-the-user-is-typing query suggestions, which

appear to the user as shown on the left side of Figure 12-10, you have two options. Which one you use

depends on what you want to suggest and the data that you’re searching.

First, to provide suggestions from folders on the file system, such as the music, pictures, and videos

libraries, the search pane provides a built-in implementation through its

setLocalContentSuggestionsSettings method with results like those in Figure 12-12. As shown in

Scenario 4 of the sample, you first create a

Windows.ApplicationModel.Search.LocalContentSuggestionSettings object, populate its

properties, and then pass that object to setLocalContentSuggestionsSettings (js/scenario4.js):

var page = WinJS.UI.Pages.define("/html/scenario4.html", {

 ready: function (element, options) {

499

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.trysetquerytext.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.setlocalcontentsuggestionsettings.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.localcontentsuggestionsettings.aspx

 var localSuggestionSettings = new

 Windows.ApplicationModel.Search.LocalContentSuggestionSettings();

 localSuggestionSettings.enabled = true;

 localSuggestionSettings.locations.append(Windows.Storage.KnownFolders.musicLibrary);

 localSuggestionSettings.aqsFilter = "kind:=music";

 Windows.ApplicationModel.Search.SearchPane.getForCurrentView()

 .setLocalContentSuggestionSettings(localSuggestionSettings);

 }

});

FIGURE 12-12 Suggestions from local folders as automatically provided by the search pane.

In populating the LocalContentSuggestionSettings properties, be sure first to set enabled to

true. The locations collection (a vector) contains one or more StorageFolder objects to indicate

where the search should take place. Because enumerating files to provide suggestions requires

programmatic access to those folders, you need to make sure your app has the appropriate capabilities

set in its manifest or that it has obtained programmatic access through the file picker. In the latter case,

the app would provide UI elsewhere to configure the search locations (perhaps through the Settings

pane, for instance).

You can also specify an Advanced Query Syntax (AQS) string in the aqsFilter property and/or

some number of Windows Properties (like System.Title) within propertiesToMatch (a string vector).

This is typically used to filter file types (as when searching a folder), but it can be as specific as you

need it to be. For more on AQS, refer to “Rich Enumeration with File Queries” in Chapter 8, “State,

Settings, Files, and Documents”; for more on Windows properties, refer to “Media File Metadata” in

Chapter 10, “Media.”

As for the second option, LocalContentSuggestionSettings can do a lot for you, but clearly many

apps will be searching on some other data source (whether local or online) and will thus need to supply

suggestions from those sources. In these cases, listen for and handle the search pane’s

suggestionsrequested event. Its eventArgs will contain the queryText, language, and

lunquisticDetails as always, and in response you populate a collection of up to five suggestions in

500

http://msdn.microsoft.com/en-us/library/windows/apps/aa965711.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd561977(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpanesuggestionsrequestedeventargs.aspx

the eventArgs.request.searchSuggestionCollection. Ideally this takes half a second or less, and it’s

important to know that all the results need to be in the collection once you return from your event

handler.

Here’s how it’s done in Scenario 2 of the search app sample (where suggestionList is just a

hard-coded list of city names):

Windows.ApplicationModel.Search.SearchPane.getForCurrentView()

.onsuggestionsrequested = function (eventObject) {

 var queryText = eventObject.queryText;

 var suggestionRequest = eventObject.request;

 var query = queryText.toLowerCase();

 var maxNumberOfSuggestions = 5;

 for (var i = 0, len = suggestionList.length; i < len; i++) {

 if (suggestionList[i].substr(0, query.length).toLowerCase() === query) {

 suggestionRequest.searchSuggestionCollection.appendQuerySuggestion(suggestionList[i]);

 if (suggestionRequest.searchSuggestionCollection.size === maxNumberOfSuggestions) {

 break;

 }

 }

 }

};

So if query contains “ba” as it would in Figure 12-10, the first 5 names in suggestionList will be

Bangkok, Bangalore, Baghdad, Baltimore, and Bakersfield. Of course, a real app will be drawing

suggestions from its own database or from a service (simulated in Scenarios 5 and 6, by the way), but

you get the idea.58 With a service, though, you should also check the suggestionResult.isCanceled

property before starting a new request: this flag indicates that the search query hasn’t actually changed

from a previous query and it’s not necessary to create new suggestions.

Note When the SearchPane.searchHistoryEnabled property is true (the default), a user’s search

history will be automatically tracked with prior searches appearing as suggestions when the search

charm is first invoked (before the user types any other characters). Setting this property to false will

disable the behavior, in which case an app can maintain its own history of previous queryText values.

If an app does this, we recommend providing a means to clear the history through the app’s Settings.

Apps can also use the SearchPane.searchHistoryContext property to create different histories

depending on different contexts. When this value is set prior to the search charm being invoked,

automatically managed search terms (searchHistoryEnabled is true) will be saved for that context.

This has no effect when an app manages its own history, in which case it can manage different

histories directly.

Now the eventArgs.request property, a SearchPaneSuggestionsRequest object has a few

features you want to know about. Its searchSuggestedCollection property is unique—it’s not an

array or other generic vector but a SearchSuggestionCollection object with a size property and four

methods: appendQuerySuggestion (to add a single item to the list, as shown above),

58 Scenario 3 of the sample shows working with suggestions for East Asian languages using an IME.

501

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpanesuggestionsrequest.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchsuggestioncollection.aspx

appendQuerySuggestions (to add an array of items at once, as you might receive from a query to a

service), appendResultSuggestion (see next section) and appendSearchSeparator (which is used to

group suggestions). In the latter case, a separator is given a label and appears as follows:

The request object also has a getDeferral method if you need to perform an asynchronous

operation to retrieve your suggestions. It works like all other deferral’s we’ve seen: before starting the

async operation (like WinJS.xhr), call getDeferral to retrieve the deferral object, start the operation,

return from the suggestionsrequested method, and call the deferral’s complete method inside the

completed handler given to the async operation’s done method. This is demonstrated again in

Scenarios 5 and 6 of the sample since this would clearly be needed when querying a service for this

purpose (derived from js/scenario5.js):

Windows.ApplicationModel.Search.SearchPane.getForCurrentView().onsuggestionsrequested =

function (eventObject) {

 var queryText = eventObject.queryText;

 var suggestionRequest = eventObject.request;

 var deferral = suggestionRequest.getDeferral();

 // Create request to obtain suggestions from service and supply them to the Search Pane.

 // Depending on the design of the service, you might vary the URL based on eventObject.language.

 // You might also compose queryText in the URL to let the service do the filtering.

 xhrRequest = WinJS.xhr({ url: /* URL to suggestion service */ });

 xhrRequest.done(

 function (request) {

 if (request.responseText /* or responseXML */) {

 // Populate suggestionRequest.searchSuggestionCollection based on response

 }

 deferral.complete(); // Indicate we're done supplying suggestions.

 },

 function (error) {

 // Call complete on the deferral when there is an error.

 deferral.complete();

 });

};

You can use any JSON or XML response format you want, but since your app is doing the parsing,

there are existing standards for returning search suggestions. For JSON, refer to the OpenSearch

Suggestions specification and Scenario 5 in the sample where a JSON response can be directly parsed

into an array and passed in one call to appendQuerySuggestions. For XML, refer to the XML Search

Suggestions Format Specification and Scenario 6. In the latter case, a function named

generateSuggestions provides a generic parser routine for such a response, and although the sample

doesn’t demonstrate using separators, URIs, and images in those suggestions, the

generateSuggestions function shows how to parse them and send them onto appendQuery-

502

http://www.opensearch.org/Specifications/OpenSearch/Extensions/Suggestions/1.1
http://www.opensearch.org/Specifications/OpenSearch/Extensions/Suggestions/1.1
http://msdn.microsoft.com/en-us/library/cc891508(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc891508(v=VS.85).aspx

Suggestion[s] as well as appendResultSuggestion, which we’ll see next.

Providing Result Suggestions
As shown in Figure 12-10 (on the right side), a search target app can provide suggested results and not

just suggested queries. This is also accomplished by handling the search pane’s suggestionsrequested

event as described in the previous section, only make sure you use

suggestionRequest.searchSuggestionCollection.appendResultSuggestion to populate the results

and not appendQuerySuggestion[s] (appendSearchSeparator can still be used). You also then need

to handle the search pane’s resultSuggestionChosen event to handle the user’s selection as a result

and not as a query.

In other words, handling the querysubmitted event means that you’re taking the query text and

populating a list of results in your own page. Because of this, you’ll be handling click or tap events for

those items directly, navigating to the appropriate details page. The resultSuggestionChosen event

tells you that the same thing has happened in the system-owned search pane with results that are

shown there from your suggestions. You thus process the resultSuggestionChosen event in the same

way that you would handle an item invocation in your own page. The eventArgs.tag property in this

case will contain the tag you provide for the suggested result in the appendResultSuggestion call.

This method actually takes five arguments in this order:

 text The first line text to show in the search pane (as in Figure 12-10).

 detailText The second line of text for a search result (as in Figure 12-10) that is also

used for tooltips.

 tag The string you want to receive in the resultSuggestionChosen event.

 image An IRandomAccessStreamReference for the image to display. The base size of

this image is 40x40 for 100% scale, 56x56 for 140%, and 72x72 for 180%.

 imageAlternateText The alt attribute for the image.

As noted in the previous section, the generateSuggestions function found in js/scenario6.js of the

sample provide a generic parser that turns XML search suggestions into the appropriate

appendResultSuggestion calls, including the use of

Windows.Storage.Streams.RandomAccessStreamReference.createFromUri to convert an image URI

to the appropriate stream reference. Typically, such URIs point to a remote source where ideally you’d

be able to ask your service for different sized images based on the resolution scaling.

Local ms-appx:// and ms-appdata:// URIs are also allowable using the appropriate .scale-1x0

naming convention. You should always, in fact, have a default image for suggested results in your

package (using an ms-appx:// URI to refer to it when necessary); the system will not provide one for

you.

503

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.streams.irandomaccessstreamreference.aspx

Type to Search
The final feature of Search is the ability to emulate the “type to search” behavior of the Windows Start

screen, where the user doesn’t explicitly invoke the Search charm. If you haven’t done it before and you

have a computer with a physical keyboard, press the Windows key to return to the Start screen, and

start typing some app name without invoking the search charm first. Voila! The search charm appears

automatically with results immediately filtered and displayed. This is essentially the same behavior that

the Start button provided in previous versions of Windows, but it’s now much more visually engaging!

To enable this in your own app, simply set the SearchPane.showOnKeyboardInput property to true.

You can enable or disable the behavior at any time through this property. Generally speaking, we

recommend providing this behavior on your app’s main page(s) and on search results pages, but not

on other subsidiary pages where there can be other input controls, nor on details pages showing

content for a single item, nor on pages that support an in-page find capability. For details, see

Guidelines for Enabling Type to Search.

Launching Apps: File Type and URI Scheme Associations

Developers of Windows 8 apps have often asked whether it’s possible for one app to launch another.

The answer is yes, with some restrictions (aren’t you surprised!). First, apps can be launched only

through a file type or URI association, not directly by name or path. To be specific, the only way for a

Windows 8 app to launch another app—including desktop applications—is through the

Windows.System.Launcher API that provides you with two choices:

 launchFileAsync Launches another app associated with a given StorageFile. An

optional LauncherOptions object lets you specify a number of details (see below).

 launchUriAsync Launches another app associated with a given URI scheme, again

with or without LauncherOptions.

Note With both launchFileAsync and launchUriAsync, Windows 8 specifically blocks apps from

launching any file or URI scheme that is handled by a system component and for which there is no

legitimate scenario for a Windows 8 app to insert itself into that process. The How to handle file activation

and How to handle protocol activation topics lists the specific file types and URI schemes in question.

The result of both these async methods, as passed to your completed handler, is a Boolean: true if

the launch succeeded, false if not. That is, barring a catastrophic failure such as a low memory

condition where the async operation will outright fail, these operations normally report success to your

completed handler with a Boolean indicating the outcome. You’ll get a false result, for example, if you

try to launch a file with executable code or other files that are blocked for security reasons.

However, you cannot know ahead of time what the result will be. This is the reason for the

LauncherOptions parameter, through which you can provide fallback mechanisms:

504

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchpane.showonkeyboardinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx#user_experience_guidelines__enabling_type_to_search
http://msdn.microsoft.com/en-us/library/windows/apps/windows.system.launcher.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452686.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.system.launcheroptions.aspx

 The treatAsUntrusted option (a Boolean, default is false) will display a warning to

the user that they’ll be switching apps if they proceed (see image below). This is good

to use when you’re unsure about the source of the association, such as launching a URI

found inside a PDF or other document, and want to prevent the user from experiencing

a classic bait-and-switch!

 displayApplicationPicker (a Boolean, default is false) will let the use choose which

app to launch as part of the process (see image below). Note that the UI allows the user

to change the default app for subsequent invocations. Also, the LauncherOptions.ui

property can be used to control the placement of the app picker.

 preferredApplicationDisplayName and preferredApplicationPackageFamilyName

provide a suggestion to the user to acquire a specific app from the Windows Store if no

other app is available to service the request.

 Similarly, fallbackUri specifies a URI to which the user will be taken if no app can be

found to handle the request and you don’t have a specific suggestion in the Windows

Store.

 Finally, for launchUriAsync, the contentType option identifies the content type

associated with a URI that controls which app is launched. This is primarily useful when

the URI doesn’t contain a specific scheme but simply refers to a file on a network using

a scheme such as http or file that would normally launch a browser for file download.

With contentType, the default app that’s registered for that type, rather than the

505

scheme, will be launched. That app, of course, must be able to them use the URI to

access the file. In other words, this option is a way to pass a URI, rather than a whole

file, to a handler app that you know can work with that URI.

Scenarios 1 and 2 of the Association Launching Sample provide a demonstration of using these

methods with some of the options so you can see their effects.

On the flip side, as demonstrated in Scenarios 3 and 4 of the same sample, is the question of how an

app associates itself with a file type or URI scheme so that it can be launched in these ways. These

associations constitute the File Activation contract and the Protocol Activation contract. In both cases

the target app must declare the file types and/or URI schemes it wishes to service in its manifest and

must then provide for those activation kinds, as we’ll see in the following sections.

Again, file or protocol association is the only means through which a Windows 8 app can launch

another, so there’s no guarantee that you’ll actually launch a specific app. Of course, the more unique

and specific the file type or URI scheme, the less likely it is that a consumer would have multiple apps

to handle the association or even that there would be many such apps in the Windows Store. Indeed,

designing a unique URI scheme interface, where the scheme is fairly app-specific, is really the best way

to have one Windows 8 app launch and delegate a task to another, since all kinds of data can be

passed in the URI string itself. The Maps app in Windows 8, for example, supports a bingmaps scheme

for accomplishing mapping tasks from other apps. You can imagine the same for a stocks app, a

calendar app, an email app (beyond mailto), and so forth. If you create such a scheme and want other

apps to use it, you’ll certainly need to provide documentation for its usage details, which means that

another app can implement the same scheme and thus offer itself as another choice in the Windows

Store. So, there’s no guarantee even with a very specific scheme that you can know for certain that

you’ll be launching another known app, but this is about as close as you can get to that capability.59

File Activation
To declare file activation capability, first go to the Declarations section of the manifest and add a “File

Type Associations” declaration, the Visual Studio UI for which is shown in Figure 12-13. Each file type

can have multiple specific types (notice the Add New button under Supported File Types), such as a

JPEG having .jpg and .jpeg file extensions. Note that some file types are disallowed for apps; see How

to handle file activation for the complete list.

59 In any case, it’s a good idea to register your URI scheme with the Internet Assigned Numbers Authority (IANA). RFC 4395

is the particular specification for defining new URI schemes.

506

http://code.msdn.microsoft.com/windowsapps/Association-Launching-535d2cec
http://msdn.microsoft.com/en-us/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452684.aspx
http://www.iana.org/
http://tools.ietf.org/html/rfc4395#section-5

FIGURE 12-13 The Declarations > File Type Associations UI in the Visual Studio manifest designer.

Under Properties, the Display Name is the overall name for a group of file types (this is optional; not

needed if you have only one type). The Name, on the other hand, is required—it’s the internal identity

for the file group and one that should remain consistent for the entire lifetime of your app across all

updates. In a way, the Name/Display Name properties for the whole group of file types is like your real

name, and all the individual file types are nicknames—any of them ultimately refer to the core file type

and your app.

Info Tip is tooltip text for when the user hovers over a file of this type and the app is the primary

association. The Logo is a little tricky; in Visual Studio here, you simply refer to a base name for an

image file, like you do with other images in the manifest. In your actual project, however, you should

have multiple files for the same image in different target sizes (not resolution scales): 16x16, 32x32,

48x48, and 256x256. The Association Launching Sample uses such images.60 These various sizes help

Windows provide the best user experience across many different types of devices.

Under Edit Flags, these options control whether an “Open” verb is available for a downloaded file of

this type: checking Open Is Safe will enable the verb; checking Always Unsafe disables the verb. Leaving

both blank might enable the verb, depending on where the file is coming from and other settings

60 Ignore, however, the sample’s use of targetsize-* naming conventions for the app’s tile images; target sizes apply only to

file and URI scheme associations.

507

http://code.msdn.microsoft.com/windowsapps/Association-Launching-535d2cec

within the system.

At the very bottom of this UI you can also set a discrete start page for handling activations, but

typically you’ll use your main activation handler, as shown in js/default.js of the Association Launching

sample (leading into js/scenario3.js).

There you’ll receive the activation kind of file, in which case eventArgs.detail is a WebUIFile-

ActivatedEventArgs: its files property contains the array of StorageFile objects from Windows.-

System.Launcher.launchFileAsync, and its verb property will be "open". You respond, of course, by

opening and presenting the file contents in whatever way is appropriate to the app.

Of course, since the file the app is pointed to might have come from anywhere, treat it as untrusted

content, as we mentioned earlier, for share targets. Avoid taking permanent actions based on those the

file contents.

As with the Search contract, too, be sure to test file activation when the app is already running and

when it must be started anew. In all cases be sure to load app settings and restore session state if

eventArgs.detail.previousExecutionState is terminated.

Protocol Activation
Creating a URI scheme association for an app is much like a file type association. In the Declarations

section of the manifest, add a Protocol declaration, as shown in Figure 12-14.

FIGURE 12-14 The Declarations > Protocol UI in the Visual Studio manifest designer.

Under Properties, the Logo, Display Name, and Name all have the same meaning as with file type

associations (see the previous section). Similarly, while you can specify a discrete start page, you’ll

typically handle activation in your main activation handler, as demonstrated in again in js/default.js of

the Association Launching sample (leading into js/scenario4.js).

There you’ll receive the activation kind of protocol, in which case eventArgs.detail is a

508

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.webui.webuifileactivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.webui.webuifileactivatedeventargs.aspx

WebUIProtocolActivatedEventArgs: its uri property contains the URI from Windows.System.-

Launcher.launchUriAsync.

As I’ve mentioned with share targets and file activation, be warned that URIs with some unique

scheme can come from anywhere, including potentially malicious sources. Be wary of any data in the

URI, and avoid taking permanent actions with it. For instance, navigate to a new page, perhaps, but

don’t modify database records to try to eval anything in the URI.

Nevertheless, protocol associations are a primary way that an app can provide valuable services to

others when appropriate. The built-in Maps app, for example, supports a bingmaps:// URI scheme and

association, so you can just launch a URI with the appropriate format to show the user a fully

interactive map instead of trying to implement such capabilities yourself. This is similar to how you rely

on an email client with the mailto: scheme; other kinds of apps can easily create a URI scheme

interface for other services and workflows.

File Picker Providers

Back in Chapter 8, “State, Settings, Files, and Documents,” we looked at how the file picker can be used

to reference not only locations on the file system but also content that’s managed by other apps or

even created on-the-fly within other apps. Let’s be clear on this point: the app that’s using the file

picker is doing so to obtain a StorageFile or StorageFolder for some purpose. But this does not

mean that provider apps that can be invoked through the file picker necessary manage their data as

files. Their role is to take whatever kind of data they manage and package it up so that it looks like a

file to the file picker.

In the “Using the File Picker” section of Chapter 8, for instance, we saw how the Windows 8 Camera

app can be used to take a photo and return it through the file picker. Such a photo did not exist at the

time the app was invoked; instead, it displayed its UI through which the user could essentially create a

file that then gets passed back through the file picker. In this way, the Camera app shortcuts the whole

process of creating a new picture, providing that function exactly when the user is trying to select a

picture file. Otherwise the user would have to start the Camera app separately, take a photo, store it

locally, and switch to the original app to invoke the file picker and relocate that new picture.

The file picker is not limited to pictures, of course: it works with any file type, depending on what

the caller indicates it wants. One app might let the user go into a music library, purchase and download

a track, and then return that file to the file picker. Another app might perform some kind of database

query and return the results as a file, and still others might allow the user to browse online databases

of file-type entities, again hiding the details of downloading and packaging that data as a file such that

the user’s experience of the file picker is seamless across the local file system, online resources, and

apps that just create data dynamically. It’s also possible to create an app that generates or acquires

file-like data on the fly, such as the Camera app that allows you to take a picture or an audio app that

could record a new sound. In such cases, however, note that the file picker contracts are designed for

relatively quick in-and-out experiences. For this reason an app should provide only basic editing

509

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.webui.webuiprotocolactivatedeventargs.aspxhttp:/msdn.microsoft.com/en-us/library/windows/apps/br224716.aspx

capabilities (like cropping a photo or trimming the audio) in this context.

As with the Search and Share target contracts, Visual Studio and Blend provide an item template for

file picker providers, specifically the File Open Picker contract item in the Add > New Item dialog as

we’ve seen before (it’s hiding off the top of the list in Figure 12-4). This gives you a basic selection

structure built around a Listview control, but not much else. For our purposes here we won’t be using

this template and we’ll draw on samples instead. Generally speaking, when servicing the file picker

contracts, an app should use the same views and UI as it does when launched normally, thereby

keeping the app experience consistent in both scenarios.

Manifest Declarations
To be a provider for the file picker, an app starts by—what else!—adding the appropriate declaration

to its manifest. In this case there are actually three declarations: File Open Picker, File Save Picker, and

Cached File Updater, as shown below in Visual Studio’s manifest designer. Each of these declarations

can be made once within any given app.

The File Open Picker and File Save Picker declarations are what make a provider app available in the

dialogs invoked through the Windows.Storage.Pickers.FileOpenPicker and FileSavePicker API.

The calling app in both cases is completely unaware that another app might be invoked—all the

interaction is between the picker and the provider app through the contract, with the latter being

responsible for first displaying a UI through which to select an object and second for returning a

StorageFile object for that item.

With both the File Open Picker and File Save Picker contracts, the provider app indicates in its

manifest those file types that it can service through the Add New button in the image below; the file

picker will then make that app available as a choice only when the calling app indicates a matching file

type. The Supports Any File Type option that you see here will make the app always appear in the list,

but this is appropriate only for apps like SkyDrive that provide a general storage location. Apps that

work only with specific file types should indicate those types.

510

Here you can see that the provider app also indicates a Start Page for the open and save provider

contracts separately—the operations are distinct and independent. In both cases, as we’ve seen for

other contracts, these are the pages that the file picker will load when the user selects this particular

provider app. As with Share targets, these pages are typically independent of the main app and will

have their own script contexts and activation handlers, as we’ll see in the next section. (Again, the

Executable and Entry Point options are not used for apps written in HTML and JavaScript; those exist

for apps written in other languages.)

You might be asking: why are the open and save contracts separate? Won’t most apps generally

provide both? Well, not necessarily. If you’re creating a provider app for a web service that is effectively

read-only (like the image results from a search engine), you can serve only the file open case. If the

service supports the creation of new files, such as a photo or document management service would,

then you can also serve the file save case. There might also be scenarios where the provider would

serve only the save case, such as writing to a sharing service. In short, Windows cannot presume the

nature of the data sources that provider apps will work with, so the two contracts are kept separate.

While the next main section in this chapter covers the Cached File Updater contract, it’s good to

know how it relates to the others here. This contact allows a provider app to synchronize local and

remote copies of a file, essentially to subscribe to and manage change/access notifications for provided

files. This is primarily of use to apps that represent a file repository (that is, one where the user will

frequently open and save files, like SkyDrive or a database app). It’s essentially a two-way binding

service for files when either local or remote copies can be updated independently. As such, it’s always

implemented in conjunction with the file picker provider contracts.

Tip As noted earlier in this chapter, the Sharing and exchanging data topic on the Windows

Developer Center has some helpful guidance as to when you might choose to be a provider for the file

save picker contract and when being a share target is more appropriate.

Activation of a File Picker Provider
Demonstrations of the file picker provider contracts—for open and save—are found in the Provide files

and a save location sample, which I’ll refer to as the provider sample. Declarations for both are included

in the manifest with Supports Any File Type, so the sample will be listed with other apps in all file

pickers, as shown here:

511

http://msdn.microsoft.com/en-us/library/windows/apps/hh464923.aspx
http://code.msdn.microsoft.com/windowsapps/File-picker-app-extension-0cb95155
http://code.msdn.microsoft.com/windowsapps/File-picker-app-extension-0cb95155

When invoked, the Start page listed in the manifest for the appropriate contract (open or save) is

loaded. These are fileOpenPicker.html and fileSavePicker.html, found in the root of the project. Both of

these pages are again loaded independently of the main app and appear as shown in Figures 12-15

and 12-16. Note that the title of the app and the color scheme is determined by the Application UI

settings in the provider app’s manifest. In particularly, the text comes from the Display Name field and

the colors come from the Foreground Text and Background Color settings under Tile, as shown in

Figure 12-17. Note that the system automatically adds the down chevron (⌄) next to the title in Figures

12-15 and 12-16 through which the user can select a different picker location or provider app.

FIGURE 12-15 The Open UI as displayed by the sample.

512

FIGURE 12-16 The Save UI as displayed by the sample.

FIGURE 12-17 Application UI settings in the manifest that affect the appearance of the open and save picker UI for

a provider app. The gray bars in this image represent other fields that I’ve omitted for brevity.

When you first run this sample, you won’t see either of these pages. Instead you’ll see a page

through which you can invoke the file open or save pickers and then choose this app as a provider. You

can do this if you like, but I recommend using a different app to invoke the pickers, just so we’re clear

on which app is playing which role. For this purpose you can use the sample we used in Chapter 8, the

Access and save files using the file picker sample. You can even use something like the Windows 8

Music app where the Open File command on its app bar will invoke a picker wherein this provider

sample will be listed.

Whatever your choice, the important parts of the provider sample are its separate pages for

servicing its contracts, which are again fileOpenPicker.html and fileSavePicker.html. In the first case, the

code is contained in js/fileOpenPicker.js where we can see the activated event handler with the

activation kind of fileOpenPicker:

function activated(eventObject) {

 if (eventObject.detail.kind ===

513

http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba

 Windows.ApplicationModel.Activation.ActivationKind.fileOpenPicker) {

 fileOpenPickerUI = eventObject.detail.fileOpenPickerUI;

 eventObject.setPromise(WinJS.UI.processAll().then(function () {

 // Navigate to a scenario page...

 }));

 }

}

Here eventObject.detail is a WebUIFileOpenPickerActivatedEventArgs object, whose

fileOpenPickerUI property (a Windows.Storage.Pickers.Providers.FileOpenPickerUI object)

provides the means to fulfill the provider’s responsibilities with the contract.

In the second case, the code is in js/fileSavePicker.js where the activation kind is fileSavePicker:

function activated(eventObject) {

 if (eventObject.detail.kind ===

 Windows.ApplicationModel.Activation.ActivationKind.fileSavePicker) {

 fileSavePickerUI = eventObject.detail.fileSavePickerUI;

 eventObject.setPromise(WinJS.UI.processAll().then(function () {

 // Navigate to a scenario page

 }));

 }

}

where eventObject.detail is a WebUIFileSavePickerActivatedEventArgs object. As with the open

contract, the fileSavePickerUI property of this (a Windows.Storage.Pickers.Providers.-

FileSavePickerUI object) provides the means to fulfill the provider’s side of the contract.

In both open and save cases, the contents of the contract’s Start page is displayed within the

letterboxed area between the system-provided top and bottom bands. If that content overflows the

provided space, scrollbars would be provided only within that area—the top and bottom bands always

remain in place. In both cases, also provide the usual features for activation, such as the splashScreen

and previousExecutionState properties, just as we saw in Chapter 3, “App Anatomy and Page

Navigation,” meaning that you should reload necessary session state and use extended splash screens

as needed.

What’s most interesting, though, are the contract-specific interactions that are represented in the

different scenarios for these pages (as you can see in Figures 12-15 and 12-16). Let’s look at each in

turn.

Note For specific details on designing a file picker experience, see Guidelines for file pickers.

File Open Provider: Local File

The provider for file open works through the FileOpenPickerUI object supplied with the

fileOpenPicker activation kind. Simply said, whatever kind of UI the provider offers to select some file

or data will be wired to the various methods, properties, and events of this object.

514

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.webui.webuifileopenpickeractivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.provider.fileopenpickerui.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.webui.webuifilesavepickeractivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.provider.filesavepickerui.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.provider.filesavepickerui.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465182.aspx

First, the UI will use the allowedFileTypes property to filter what it displays for selection—clearly,

the provider should not display items that don’t match what the file picker is being asked to pick! Next,

the UI can use the selectionMode property (a FileSelectionMode value) to determine if the file picker

was invoked for single or multiple selection.

When the user selects an item within the UI, the provider calls the addFile method with the

StorageFile object as appropriate for that item. Clearly, the provider has to somehow create that

StorageFile object. In the sample’s open picker > Scenario 1, this is accomplished with a

StorageFolder.getFileAsync (where the StorageFolder is the package location).

Windows.ApplicationModel.Package.current.installedLocation

 .getFileAsync("images\\squareTile-sdk.png").then(function (fileToAdd) {

 addFileToBasket(localFileId, fileToAdd);

}

where addFileToBasket just calls FileOpenPickerUI.addFile and displays messages for the result.

That result is a value from Windows.Storage.Pickers.Provider.AddFileResult: added (success),

alreadyAdded (redundant operations, so the file is already there), notAllowed (adding is denied due to

a mismatched file type), and unavailable (app is not visible). These really just help you report the

result to users in your UI. Note also that the canAddFile method might be helpful for enabling or

disabling add commands in your UI as well, which will prevent some of these error cases from ever

arising in the first place.

The provider app must also respond to requests to remove a previously added item, as when the

user removes a selection from the “basket” in the multi-select file picker UI. To do this, listen for the

FileOpenPickerUI object’s fileRemoved event, which provides a file ID as an argument. You pass this

ID to containsFile followed by removeFile as in the sample (js/fileOpenPickerScenario1.js):

// Wire up the event in the page's initialization code

fileOpenPickerUI.addEventListener("fileremoved", onFileRemovedFromBasket, false);

function removeFileFromBasket(fileId) {

 if (fileOpenPickerUI.containsFile(fileId)) {

 fileOpenPickerUI.removeFile(fileId);

 }

}

If you need to know when the file picker UI is closing your page (such as the user pressing the Open

or Cancel buttons as shown in Figure 12-15), listen for the closing event. This gives you a chance to

close any sessions you might have opened with an online service and otherwise perform any necessary

cleanup tasks. In the eventArgs you’ll find an isCanceled property that indicates whether the file

picker is being canceled (true) or if it’s being closed due to the Open button (false). The

eventArgs.closingOperation object also contains a getDeferral method and a deadline property

that allows you to carry out async operations as well, similar to what we saw in Chapter 3 for the

suspending event.

A final note is that a file picker provider should respect the FileOpenPickerUI.settingsIdentifier

to relaunch the provider to a previous state (that is, a previous picker session). If you remember from

515

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.provider.fileselectionmode.aspx

the other side of this story, an app that’s using the file picker can use the settingsIdentifier to

distinguish different use cases within itself—perhaps to differentiate certain file types or feature

contexts. The identifier can also differ between different apps that invoke the file picker. By honoring

this property, then, a provider app can maintain a case-specific context each time it’s invoked (basically

using settingsIdentifier in filenames and the names of settings containers), which is how the

built-in file pickers for the file system works.

It’s also possible for the provider app to be suspended while displaying its UI and could possibly be

shut down if the calling app is closed. However, if you manage picker state based on

settingsIdentifier values, you don’t need to save or manage any other session state where your

picker functionality is concerned.

File Open Provider: URI

For the most part, Scenario 2 of the open file picker case in the provider sample is just like we’ve seen

in the previous section. The only difference is that it shows how to create a StorageFile from a nonfile

source, such as an image that’s obtained from a remote URI. In this situation we need to obtain a data

stream for the remote URI and convert that stream into a StorageFile. Fortunately, a few WinRT APIs

make this very simple, as shown in js/fileOpenPickerScenario2.js within its onAddFileUri method:

function onAddUriFile() {

 // Respond to the "Add" button being clicked

 var imageSrcInput = document.getElementById("imageSrcInput");

 if (imageSrcInput.value !== "") {

 var uri = new Windows.Foundation.Uri(imageSrcInput.value);

 var thumbnail = Windows.Storage.Streams.RandomAccessStreamReference.createFromUri(uri);

 // Retrieve a file from a URI to be added to the picker basket

 Windows.Storage.StorageFile.createStreamedFileFromUriAsync("URI.png", uri,

 thumbnail).then(function (fileToAdd) {

 addFileToBasket(uriFileId, fileToAdd);

 },

 function (error) {

 // ...

 });

 } else {

 // ...

 }

}

Here Windows.Storage.StorageFile.createStreamedFileFromUriAsync does the honors to give

us a StorageFile for a URI, and addFileToBasket is again an internal method that just calls the

addFile method of the FileOpenPickerUI object.

File Save Provider: Save a File

Similar to how the file open provider interacts with a FileOpenPickerUI object, a provider app for

saving files works with the specific methods, properties, and events FileSavePickerUI class. Again, the

516

open and save contracts are separate concerns because the data source for which you might create a

provider app might or might not support save operations independently of open. If you do support

both, though, you will likely reuse the same UI and would thus use the same Start page and activation

path.

Within the FileSavePickerUI class, we first have the allowedFileTypes as provided by the app

that invoked the file save picker UI in the first place. As with open, you’ll use this to filter what you

show in your own UI so that users can clearly see what items for these types already exist. You’ll also

typically want to populate a file type drop-down list with these types as well.

For restoring the provider’s save UI for the specific calling app from a previous session, there is

again the settingsIdentifier property.

Referring back to Figure 12-16, notice the controls along the bottom of the screen, the ones that

are automatically provided by the file picker when the provider app is invoked. When the user changes

the filename field, the provider app can listen for and handle the FileSavePickerUI object’s

filenameChanged event; in your handler you can get the new value from the fileName property. If the

provider app has UI for setting the filename, it cannot write to this property, however. It must instead

call trySetFileName, whose return value from the SetFileNameResult enumeration is either

succeeded, notAllowed (typically a mismatched file type), or unavailable. This is typically used when

the user taps an item in your list, where the expected behavior is to set the filename to the name of

that item.

The most important event, of course, happens when the user finally taps the Save button. This will

fire the FileSavePickerUI object’s targetFileRequested event. You must provide a handler for this

event, in which you must create an empty StorageFile object in which the app that invoked the file

picker UI can save its data. The name of this StorageFile must match the fileName property.

The eventArgs for this event is a Windows.Storage.Pickers.Providers.TargetFileRequested-

EventArgs object. This contains a single property named request, which is a TargetFileRequest. Its

targetFile property is where you place the StorageFile you create (or null if there’s an error). You

must set this property before returning from the event handler, but of course you might need to

perform asynchronous operations to do this at all. For this purpose, as we’ve seen many times, the

request also contains a getDeferral method. This is used in Scenario 1 of the provider sample’s save

case (js/fileSavePickerScenario1.js):

function onTargetFileRequested(e) {

 var deferral = e.request.getDeferral();

 // Create a file to provide back to the Picker

Windows.Storage.ApplicationData.current.localFolder.createFileAsync(fileSavePickerUI.fileName)

 .done(function (file) {

 // Assign the resulting file to the targetFile property and complete the deferral

 e.request.targetFile = file;

 deferral.complete();

 }, function () {

 // Set the targetFile property to null and complete the deferral to indicate failure

517

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.provider.setfilenameresult.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.provider.filesavepickerui.targetfilerequested.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.provider.targetfilerequestedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.provider.targetfilerequestedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.provider.targetfilerequest.aspx

 e.request.targetFile = null;

 deferral.complete();

 });

};

In your own app you will, of course, replace the createFileAsync call in the local folder with

whatever steps are necessary to create a file or data object. Where remote files are concerned, on the

other hand, you’ll need to employ the Cached File Updater contract (see “Cached File Updater” below).

File Save Provider: Failure Case

Scenario 2 of the provider sample’s save UI just shows one other aspect of the process: displaying

errors in case there is a real failure to create the necessary StorageFile. Generally speaking, you can

use whatever UI you feel is best and consistent with the app in general, to let the user know what they

need to do—typically with a MessageDialog as does the sample:

function onTargetFileRequestedFail(e) {

 var deferral = e.request.getDeferral();

 var messageDialog = new Windows.UI.Popups.MessageDialog("If the app needs the user to correct

a problem before the app can save the file, the app can use a message like this to tell

the user about the problem and how to correct it.");

 messageDialog.showAsync().done(function () {

 // Set the targetFile property to null and complete the deferral to indicate failure once

 // the user has closed the dialog. This will allow the user to take any necessary

 // corrective action and click the Save button once again.

 e.request.targetFile = null;

 deferral.complete();

 });

};

Cached File Updater

Using the cached file updater contract provides for keeping local copies of a file in sync with one

managed by a provider app, most often a remote file of some kind. This contract is specifically meant

for apps (such as the SkyDrive app in Windows) that serve primarily as a storage location for user

data—a place where users regularly save, access, and update files. In other cases where the user is

generally going to pick a file and use it some scenario but not otherwise come back to it, using the file

picker contracts is entirely sufficient.

Back in Chapter 8, we saw some of the method calls that are made by an app that uses the file

picker: Windows.Storage.CachedFileManager.deferUpdates and

Windows.Storage.CachedFileManager.completeUpdatesAsync. This usage is shown in Scenarios 4

and 6 of the Access and save files using the file picker sample we worked with in that chapter. Simply

said, these are the calls that a file-consuming app makes if and when it makes updates to a file that it

obtained from a file picker, since it won’t know (and shouldn’t care) whether the file provider has

518

http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba

another copy in database, web service, etc., that needs to be kept in sync. If the provider needs to

handle synchronization, the consuming app’s calls to these methods will trigger the necessary cached

file updater UI of the provider app, which might or might not be shown, depending on the need

(hopefully very seldom!). Even if the consuming app doesn’t call these methods, the provider app will

still be notified of changes but won’t be able to show any UI.

There are two directions or targets with which this contract works, depending on whether it’s

needed to update a local (cached) copy of a file or the remote (source) copy. In the first case, the

provider is asked to update the local copy, typically when the consuming app attempts to access that

file (pulling it from the FutureAccessList or MostRecentlyUsed list of

Windows.Storage.AccessCache). In the second case, the consuming app has modified the file such

that the provider needs to propagate those changes to its source copy.

From a provider app’s point of view, the need for such updates comes into play whenever it supplies

a file to another app. This can happen through the file picker contracts, as we’ve seen in the previous

section, but also through file type associations as well as the share contract. In the latter case a share

source app is, in a sense, a file provider and might make use of the cached file updater contract as well.

In short, if you want your file-providing app to be able to track and synchronize updates between local

and remote copies of a file, this is the contract to use.

Supporting the contract begins with a manifest declaration, of course, as shown below, where the

Start page indicates the page implementing the cached file updater UI. (Again, apps written in

HTML/JavaScript do not use the Executable and Entry Point fields.) That page will handle the necessary

events to update files and might or might not actually be displayed to the user, as we’ll see later.

The next step for the provider is to indicate when a given StorageFile should be hooked up with

this contract. It does so by calling

Windows.Storage.Provider.CachedFileUpdater.setUpdateInformation on a provided file as shown

in Scenario 3 of the Provide files and a save location sample, which I’ll again refer to as the provider

sample for simplicity (js/fileOpenPickerScenario3.js):

function onAddFile() {

 // Respond to the "Add" button being clicked

 Windows.Storage.ApplicationData.current.localFolder.createFileAsync("CachedFile.txt",

 Windows.Storage.CreationCollisionOption.replaceExisting).then(function (file) {

 Windows.Storage.FileIO.writeTextAsync(file, "Cached file created...").then(function () {

519

http://msdn.microsoft.com/en-us/library/windows/apps/br230566.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.provider.cachedfileupdater.setupdateinformation.aspx
http://code.msdn.microsoft.com/windowsapps/File-picker-app-extension-0cb95155

 Windows.Storage.Provider.CachedFileUpdater.setUpdateInformation(file, "CachedFile",

 Windows.Storage.Provider.ReadActivationMode.beforeAccess,

 Windows.Storage.Provider.WriteActivationMode.notNeeded,

 Windows.Storage.Provider.CachedFileOptions.requireUpdateOnAccess);

 addFileToBasket(localFileId, file);

 }, onError);

 }, onError);

};

Note setUpdateInformation is within the Windows.Storage.Provider namespace and is

different from the Windows.Storage.CachedFileManager object that’s used on the other side of the

contract; be careful to not confuse the two.

The setUpdateInformation method takes the following arguments:

 A StorageFile for the file in question.

 A content identifier string that identifies the remote resource to keep in sync.

 A ReadActivationMode indicating whether the calling app can read its local file without

updating it; values are notNeeded and beforeAccess.

 A WriteActivationMode indicating whether the calling app can write to the local file

and whether writing triggers an update; values are notNeeded, readOnly, and

afterWrite.

 One or more values from CachedFileOptions (that can be combined with bitwise-OR)

that describes the ways in which the local file can be accessed without triggering an

update; values are none (no update), requireUpdateAccess (update on accessing the

local file), useCachedFileWhenOffline (will update on access if the calling app desires,

and access is allowed if there’s no network connection), and denyAccessWhenOnline

(triggers an update on access and requires a network connection).

It’s through this call, in other words, that the provider specifically controls how and when it should

be activated to handle updates when a local file is accessed.

So, together we have two cases where the provider app will be invoked and might be asked to show

its UI: one where the calling app updates the file, and another when the calling app accesses the file

and might need an update before reading its contents.

Before going into the technical details, let’s see how these interactions appear to the user. To see

the cached file updater in action using the sample, we need to invoke it by using the file picker from

another app. First, then, run the provider sample to make sure its contracts are registered. Then run the

aforementioned Access and save files using the file picker sample. In the latter, Scenarios 4, 5, and 6

cause interactions with the cached file updater contract. Scenarios 4 and 6 write to a file to trigger an

update to the remote copy; Scenario 5 accesses a local file that will trigger a local update as part of the

process.

520

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.provider.readactivationmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.provider.writeactivationmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.provider.cachedfileoptions.aspx
http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba

Updating a Local File: UI
In Scenario 5 (updating a local file), start by tapping the Pick Cached File button in the UI shown here:

This will launch the provider sample; in that view, select Scenario 3 so that you see the UI shown in

Figure 12-18. This is the mode of the provider sample that is just a file picker provider,

(js/fileOpenPickerScenario3.js) where it calls setUpdateInformation. This is not the UI for the cached

file updater yet. Click the Add File to Basket button, and tap the Open button. This will return you to

the first app (the picker sample in the above graphic) where the Output Latest Version button will now

be enabled. Tapping that button will then invoke the provider sample through the cached file updater

contract, as shown in Figure 12-19. This is what appears when there’s a need to update the local copy

of the cached file.

FIGURE 12-18 The provider sample’s UI for picking a file; the setUpdateInfomation method is called on the

provided file to set up the cached file updater relationship.

521

FIGURE 12-19 The cached file updater provider sample’s UI for the cached file updater contract on a local file.

Take careful note of the description in the sample. While the sample shows this UI by default, a

cached file updater app will not show it unless it’s necessary to resolve conflicts or collect credentials.

Oftentimes no such interaction is necessary and the provider silently provides an update to the local

file or indicated that the file is current. The sample’s UI here is simply providing both those options as

explicit choices (and be sure to choose one of them because selecting Cancel will throw an exception).

Updating a Remote File: UI
In Scenario 6 (updating a remote file) of the file picker sample, we can see the interactions that take

place when the consuming app writes changes to its local copy, thereby triggering an update to the

remote copy. Start by tapping the Get Save File button in the UI shown next:

In the picker, select the provider sample as the picker source, which invokes the UI of Figure 12-20

through the file save picker contract and implemented through html/fileSavePickerScenario3.html and

js/fileSavePickerScenaro3.js. If you look in the JavaScript file, you’ll again see a call to

522

setUpdateInformation that’s called when you enter a file name and tap Save. Doing so also returns

you to the picker sample above where Write to File should now be enabled. Tapping Write to File then

reinvokes the provider sample through the cached file updater contract with the UI shown in Figure

12-21. This UI is intended to demonstrate how such a provider app would accommodate overwriting or

renaming the remote file.

FIGURE 12-20 The provider sample’s UI for saving a file; the setUpdateInfomation method is again called on the

provided file to set up the cached file updater relationship.

FIGURE 12-21 The cached file updater provider sample’s UI for the cached file updater contract on a remote file.

Update Events
Let’s see how the cached file updater contract looks in code now. As you will by now expect, the

523

provider app is launched and the Start page (cachedFileUpdater.html in the project root) loaded with

the activation kind of cachedFileUpdater. This will happen for both local and remote cases, and as

we’ll see here, you use the same activation code for both. Here eventObject.detail is a

WebUICachedFileUpdaterActivatedEventArgs that contains a cachedFileUpdaterUI property (a

CachedFileUpdaterUI) along with the usual roster of kind, previousExecutionState, and

splashScreen. Here’s how it looks in js/cachedFileUpdater.js of the provider sample:

function activated(eventObject) {

 if (eventObject.detail.kind ===

 Windows.ApplicationModel.Activation.ActivationKind.cachedFileUpdater) {

 cachedFileUpdaterUI = eventObject.detail.cachedFileUpdaterUI;

 cachedFileUpdaterUI.addEventListener("fileupdaterequested", onFileUpdateRequest);

 cachedFileUpdaterUI.addEventListener("uirequested", onUIRequested);

 switch (cachedFileUpdaterUI.updateTarget) {

 case Windows.Storage.Provider.CachedFileTarget.local:

 // Code omitted: configures the sample to show cachedFileUpdaterScenario1 if needed.

 break;

 case Windows.Storage.Provider.CachedFileTarget.remote:

 // Code omitted: configures the sample to show cachedFileUpdaterScenario2 if needed.

 break;

 }

 }

}

When the provider app is invoked to update a local file from the remote source, the cachedFile-

UpdaterUI.updateTarget property will be local, as you can see above. When the app is being asked

to update a remote file with local changes, the target is remote. All the sample does in these cases is

point to either html/cachedFileUpdaterScenario1.html (Figure 12-19) or

html/cachedFileUpdaterScenario2.html (Figure 12-21) as the update UI. We’ll see how this works in a

moment.

The UI is not actually shown initially. What happens first is that the CachedFileUpdaterUI object

fires its fileUpdateRequested event to attempt a silent update. Here the eventArgs is a

FileUpdateRequestedEventArgs object with a single request property (FileUpdateRequest), an

object that you’ll want to save in a variable that’s accessible from your update UI.

If it’s possible to silently update a local file, follow these steps:

 Because you’ll likely be doing async operations to perform the update, obtain a deferral

from request.getDeferral.

 To update the contents of the local file, use one of these options:

 If you already have a StorageFile with the new contents, just call

request.updateLocalFile. This is a synchronous call, in which case you do not need to

obtain a deferral.

524

http://msdn.microsoft.com/en-us/library/windows/apps/hh701752.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.provider.cachedfileupdaterui.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.provider.cachedfileupdaterui.fileupdaterequested.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.provider.fileupdaterequest.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.provider.fileupdaterequest.updatelocalfile.aspx

 The local file’s StorageFile object will be in request.file. You can open this file and

write whatever contents you need within it. This will typically start an async operation, after

which you return from the event handler.

 To update the contents of a remote file, copy the contents from request.file to the

remote source.

 Depending on the outcome of the update, set request.status to a value from

FileUpdateStatus: complete (the copies are sync’d), incomplete (sync didn’t work but

the local copy is still available), userInputNeeded (the update failed for need of

credentials or conflict resolution), currentlyUnavailable (source can’t be reached, and

the local file is inaccessible), failed (sync cannot happen now or ever, as when the

source file has been deleted), and completeAndRenamed (the source version has been

renamed, generally to resolve conflicts).

 If you asked for a deferral and processed the outcome within completed and error

handlers, call the deferral’s complete method to finalize the update.

Now the provider might know ahead of time that it can’t do a silent update at all—a user might not

be logged into the back-end service (or credentials are needed each time), there might be a conflict to

resolve, and so forth. In these cases the event handler here should check the value of

cachedFileUpdaterUI.uiStatus (a UIStatus) and set the request.status property accordingly:

 If the UI status is visible, switch to that UI and return from the event handler.

Complete the deferral when the user has responded through the UI.

 If the UI status is hidden, set request.status to userInputNeeded and return. This will

trigger the CacledFileUpdaterUI.onuiRequested event followed by another

fileUpdateRequested event where uiStatus will be visible, in which case you’ll

switch to your UI.

 If the UI status is unavailable, set request.status to currentlyUnavailable.

You can see some this in the sample’s onFileUpdateRequest handler; it really handles only the

uiStatus check because it doesn’t attempt silent updates at all (as described in the comments below):

function onFileUpdateRequest(e) {

 fileUpdateRequest = e.request;

 fileUpdateRequestDeferral = fileUpdateRequest.getDeferral();

 // Attempt a silent update using fileUpdateRequest.file silently, or call

 // fileUpdateRequest.updateLocalFile in the local case, setting fileUpdateRequest.status

 // accordingly, then calling fileUpdateRequestDeferral.complete(). Otherwise, if you know

 // that user action will be required, execute the following code.

 switch (cachedFileUpdaterUI.uiStatus) {

 case Windows.Storage.Provider.UIStatus.hidden:

 fileUpdateRequest.status = Windows.Storage.Provider.FileUpdateStatus.userInputNeeded;

 fileUpdateRequestDeferral.complete();

525

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.provider.fileupdatestatus.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.provider.uistatus.aspx

 break;

 case Windows.Storage.Provider.UIStatus.visible:

 // Switch to the update UI (configured in the activated event)

 var url = scenarios[0].url;

 WinJS.Navigation.navigate(url, cachedFileUpdaterUI);

 break;

 case Windows.Storage.Provider.UIStatus.unavailable:

 fileUpdateRequest.status = Windows.Storage.Provider.FileUpdateStatus.failed;

 fileUpdateRequestDeferral.complete();

 break;

 }

}

Again, if a silent update succeeds, the provider app’s UI never appears to the user. In the case of the

provider sample, since it never attempts to do a silent update, it always does the check on uiStatus.

When the app was just launched to service the contract, we’ll end up in the hidden case and return

userInputNeeded, as would happen if you attempted a silent update but returned the same status.

Either way, the CachedFileUpdateUI object will fire its uiRequested event, telling the provider app

that the system is making the UI visible. The app, in fact, can defer initializing its UI until this event

occurs because there’s no need to do so for a silent update.

After this, the fileUpdateRequested event will fire again with uiStatus now set to visible. Notice

how the code above will have called request.getDeferral in this case but has not called its complete.

We save that step for when the UI has done what it needs to do (and, in fact, we save both the request

and the deferral for use from the UI code).

The update UI is responsible for gathering whatever user input is necessary to accomplish the task:

collecting credentials, choosing which copy of a file to keep (the local or remote version), allowing for

renaming a conflicting file (when updating a remote file), and so forth. When updating a local file, it

writes to the StorageFile within request.file or calls request.updateLocalFile; in the remote case

it copies data from the local copy in request.file.

To complete the update, the UI code then sets request.status to complete (or any other

appropriate code if there’s a failure) and calls the deferral’s complete method. This will change the

status of the system-provided buttons along the bottom of the screen, as you can see in Figure 12-19

and Figure 12-21—enabling the OK button and disabling Cancel. In the provider sample, both buttons

just execute these two lines for this purpose:

fileUpdateRequest.status = Windows.Storage.Provider.FileUpdateStatus.complete;

fileUpdateRequestDeferral.complete();

All in all, the interactions between the system and the app for the cached file updater contract are

fairly simple and straightforward in themselves: handle the events, copy data around as needed, and

update the request status. The real work with this contract is first deciding when to call

setUpdateInformation and then providing the UI to support updates of local and remote files under

the necessary circumstances. This will, of course, involve more interactions with whatever web service

or database or whatever else stores the files.

526

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.provider.cachedfileupdaterui.uirequested.aspx

Contacts

The last contract we’ll explore in this chapter (whew!) is that of the contact picker. We haven’t seen this

feature of Windows 8 in action yet. Let’s take a look at it first and then explore how the picker is used

from one side of the contract and how an provider app fulfills the other side.

A contact, as you probably expect, is information about a person that includes details like name,

phone numbers, email addresses, and so forth. An obvious place where you’d need a contact is when

composing an email, as shown in Figure 12-22. Here, tapping the + controls to the right of the To and

Cc fields will open the contact picker, which defaults to the Windows 8 People app, as shown in Figure

12-23 (its splash screen) and Figure 12-24 (its multiselect picker view, where I have blurred my friends’

identities so that they don’t start blaming me for unwanted attention!). As we saw with the File Picker

UI, the provider app supplies the UI for the middle portion of the screen while the top and bottom

bars, the header, and the down-arrow menu control are supplied by Windows using information from

the provider app’s manifest. (Refer back to Figure 12-17.) Figure 12-25 shows the appearance of the

Contact picker app sample in its provider mode, as well as the menu that allows you to select a

different provider (those who have declared themselves as a contact provider).

FIGURE 12-22 The Windows 8 mail app uses the contact picker to choose a recipient.

527

http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1

FIGURE 12-23 The Windows 8 People app on startup when launched as a contact provider.

FIGURE 12-24 The picker UI within the Windows 8 People app, shown for multiple selection (with my friends

blurred because they’re generally not looking for fame amongst developers). The selections are gathered along the

bottom in the basket.

528

FIGURE 12-25 The Contact Picker sample’s UI when used as a provider, along with the header flyout menu allowing

selection of a picker provider.

When I select one or more contacts in any provider app and press the Select button along the

bottom of the screen, those contacts are then brought directly back to the first app—Mail in this case.

Just as the file picker contract allowed the user to navigate into data surfaced as files by any other app,

the contact contract (say that ten times fast!) lets the user easily navigate to people you might select

from any other source.

Using the Contact Picker
Contacts as a whole work with the API in the Windows.ApplicationModel.Contacts namespace. An

app that consumes contacts sees each one represented by an instance of the ContactInformation

class, whose properties like name, phoneNumbers, locations, emails, instantMessages, and

customFields give you the contact information, along with the getThumbnailAsync and

queryCustomFields methods.

Choosing a contract happens through a picker UI much like the file picker, invoked through

Windows.ApplicationModel.Contacts.ContactPicker. After creating an instance of this object, you

can set the commitButtonText property to control the first button’s appearance in the picker UI (as

with “Select” in the earlier figures). You can also set the selectionMode property to a value from the

ContactSelectionMode enumeration: either contact (the default) or fields. In the former case, the

whole contact information is returned; in the latter, the picker works against the contents of the

picker’s desiredFields. Refer to the documentation on that property for details.

When you’re ready to show the UI, call the picker’s pickSingleContactAsync or pickMultiple-

ContactsAsync methods. These provide the completed handler for the async operation with a single

ContactInformation object or a vector of them, respectively. As with the file picker, note that these

APIs will throw an exception if called when the app is in snapped view, so you’ll want to avoid doing

this.

529

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.contacts.contactinformation.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.contacts.contactpicker.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.contacts.contactpicker.desiredfields.aspx

Picking a single contact and displaying its information is demonstrated in Scenario 1 of the Contact

picker app sample (js/scenarioSingle.js):

var picker = new Windows.ApplicationModel.Contacts.ContactPicker();

picker.commitButtonText = "Select";

// Open the picker for the user to select a contact

picker.pickSingleContactAsync().done(function (contact) {

 if (contact !== null) {

 // Consume the contact information...

 }

});

Choosing multiple contacts (Scenario 2, js/scenarioMultiple.js) works the same way, just using

pickMultipleContactsAsync. In either case, the calling app then applies the ContactInformation

data however it sees fit, such as populating a To or Cc field like the Mail app. However, other than the

name property in that object, which is just a string, its properties have a little more structure, as shown

in the following table.

Property Type Field Properties and Types

emails
phoneNumbers
customFields

Vector of ContactField category (ContactFieldCategory), name (string),

type (a ContactFieldType), value (string)

instantMessages Vector of ContactInstantMessageField Same as ContactField above plus displayText,

launchUri, service, and userName (all strings)

locations Vector of ContactLocationField Same as ContactField above plus city, country,

postalCode, region, street, and

unstructuredAddress (all strings)

Accordingly, the sample consumes a ContactInformation object as follows, first extracting the

individual vector properties:

appendFields("Emails:", contact.emails, contactElement);

appendFields("Phone Numbers:", contact.phoneNumbers, contactElement);

appendFields("Addresses:", contact.locations, contactElement);

and then enumerating the contents of those vectors and in this case creating elements with their

contents. Other apps will, of course, transfer the values to appropriate fields or other parts of the app

UI—what’s shown here demonstrates processing of the different categories:

function appendFields(title, fields, container) {

 // Creates UI for a list of contact fields of the same type, e.g. emails or phones

 fields.forEach(function (field) {

 if (field.value) {

 // Append the title once we have a non-empty contact field

 if (title) {

 container.appendChild(createTextElement("h4", title));

 title = "";

 }

 // Display the category next to the field value

 switch (field.category) {

530

http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1
http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.contacts.contactfield.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.contacts.contactfield.category.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.contacts.contactfieldtype.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.contacts.contactinstantmessagefield.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.contacts.contactlocationfield.aspx

 case Windows.ApplicationModel.Contacts.ContactFieldCategory.home:

 container.appendChild(createTextElement("div", field.value + " (home)"));

 break;

 case Windows.ApplicationModel.Contacts.ContactFieldCategory.work:

 container.appendChild(createTextElement("div", field.value + " (work)"));

 break;

 case Windows.ApplicationModel.Contacts.ContactFieldCategory.mobile:

 container.appendChild(createTextElement("div", field.value + " (mobile)"));

 break;

 case Windows.ApplicationModel.Contacts.ContactFieldCategory.other:

 container.appendChild(createTextElement("div", field.value + " (other)"));

 break;

 case Windows.ApplicationModel.Contacts.ContactFieldCategory.none:

 default:

 container.appendChild(createTextElement("div", field.value));

 break;

 }

 }

 });

}

Contact Picker Providers
On the provider side, which is also demonstrated in the Contact picker sample, we see the same

pattern as for file picker providers. First, a provider app needs to declare the Contact Picker contract in

its manifest, where it indicates the Start page to load within the context of the picker. In the sample,

the Start page is contactPicker.html that in turn loads html/contactPickerScenario.html (with their

associated JavaScript files):

As with the file picker, having a separate Start page means having a separate activated handler, and

in this case it looks for the activation kind of contactPicker (js/contactPicker.js):

function activated(eventObject) {

 if (eventObject.detail.kind ===

 Windows.ApplicationModel.Activation.ActivationKind.contactPicker) {

 contactPickerUI = eventObject.detail.contactPickerUI;

 eventObject.setPromise(WinJS.UI.processAll().then(function () {

 // ...

 }));

 }

}

The eventObject.detail here is a ContactPickerActivatedEventArgs (these names are long, but

531

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.contactpickeractivatedeventargs.aspx

at least they’re predictable!). As with all activations, it contains kind, previousExecutionState, and

splashScreen properties for the usual purposes. Its contactPickerUI property, a ContactPickerUI,

then contains the information specific for the contact picker contract:

 The selectionMode and desiredFields properties as supplied by the calling app.

 Three methods—addContact, removeContact, and containsContac—for managing

what’s returned to the calling app. These methods correspond to the actions of a typical

selection UI, such as that provided by a ListView.

 One event, contactsRemoved, which informs the provider when the user removes an

item from the basket along the bottom of the screen. (Refer back to Figure 12-24.)

Within a provider, each contact is represented by a

Windows.ApplicationModel.Contacts.Contact object. A provider will create an object for each

contact it supplies. In the sample (js/contactPickerScenario.js), there’s an array called sampleContacts

that simulates what would more typically come from a database. That array just contains JSON records

like this:

{

 name: "David Jaffe",

 homeEmail: "david@contoso.com",

 workEmail: "david@cpandl.com",

 workPhone: "",

 homePhone: "248-555-0150",

 mobilePhone: "",

 address: {

 full: "3456 Broadway Ln, Los Angeles, CA",

 street: "",

 city: "",

 state: "",

 zipCode: ""

 },

 id: "761cb6fb-0270-451e-8725-bb575eeb24d5"

},

Each record is shown as a check box in the sample’s UI (generated in the createContactUI

function), which is a quick and easy way to show a selectable list of items! Of course, your own provider

app will likely use a ListView for this purpose; the sample is just trying to keep things simple so that you

can see what’s happening with the contract itself.

When a contact is selected, the sample’s addContactToBasket function is called. This is the point at

which we create the actual Contact object and call ContactPickerUI.addContact. The process here

for each field follows a chain of other function calls, so let’s see how it works for the single homeEmail

field in the source record, starting with addContactToBasket (again in js/contactPickerScenario.js). The

rest of the field values are handled pretty much the same way:

function addContactToBasket(sampleContact) {

 var contact = new Windows.ApplicationModel.Contacts.Contact();

 contact.name = sampleContact.name;

532

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.contacts.provider.contactpickerui.aspxContactPickerUI

 appendEmail(contact.fields, sampleContact.homeEmail,

 Windows.ApplicationModel.Contacts.ContactFieldCategory.home);

 // Add other fields...

 // Add the contact to the basket

 switch (contactPickerUI.addContact(sampleContact.id, contact)) {

 // Show various messages based on the result, which is of type

 // Windows.ApplicationModel.Contacts.Provider.AddContactResult

 }

}

As you can see, the homeEmail field is passed to a function called appendEmail, where the first

argument is the vector (Contact.fields) in which to add the field and the third parameter is the

category (home). These are then passed through to another generic function, appendField, where the

type of the field has been thrown into the mix, all of which is used to create a ContactField object

and add it to the contact:

function appendEmail(fields, email, category) {

 // Adds a new email to the contact fields vector

 appendField(fields, email, Windows.ApplicationModel.Contacts.ContactFieldType.email, category);

}

function appendField(fields, value, type, category) {

 // Adds a new field of the desired type, either email or phone number

 if (value) {

 fields.append(new Windows.ApplicationModel.Contacts.ContactField(value, type, category));

 }

}

In short, this is essentially how all the fields in a contact are assembled, one bit at a time.

Now, when an item is unselected in the list, it needs to be removed from the basket:

function removeContactFromBasket(sampleContact) {

 // Programmatically remove the contact from the basket

 if (contactPickerUI.containsContact(sampleContact.id)) {

 contactPickerUI.removeContact(sampleContact.id);

 }

}

Similarly, when the user removes an item from the basket, the contact provider needs to update its

selection UI by handling the contactremoved event:

contactPickerUI.addEventListener("contactremoved", onContactRemoved, false);

function onContactRemoved(e) {

 // Add any code to be called when a contact is removed from the basket by the user

 var contactElement = document.getElementById(e.id);

 var sampleContact = sampleContacts[contactElement.value];

 contactElement.checked = false;

}

533

You’ll notice that we haven’t said anything about closing the UI, and in fact the ContactPickerUI

object does not have an event for this. Simply said, when the user selects the commit button (with

whatever text the caller provided), it gets back whatever the provider has added to the basket. If the

user taps the cancel button, the operation returns a null contact. In both cases, the provider app will be

suspended and, if it wasn’t running prior to being activated for the contact, terminated.

Do note that as with file picker providers, a contact provider needs to be ready to save its session

state when suspended such that it can restore that state when relaunched with

previousExecutionState set to terminated. Although not demonstrated in the sample, a real

provider app should save its current selections and viewing position within its list, along with whatever

else, to session state and restore that in its activated handler when necessary.

What We’ve Just Learned

 Contracts in Windows 8 provide the ability for any number of apps to extend system

functionality as well as extend the functionality of other apps. Through contracts,

installing more apps that support them creates a richer overall environment for users.

 The Share contract provides a shortcut means through which data from one app can be

sent to another, eliminating many intermediate steps and keeping the user in the

context of the same app. A source app packages data it can share when the Share

charm is invoked; target apps consume that data, often copying it elsewhere as in an

email message, text message, social networking service, and so forth.

 The Share target provides for delayed rendering of items (such as graphics), for

long-running operations (such as when it’s necessary to upload large data files to a

service), and for providing quicklinks to specific targets within the same app (such as

frequent email recipients).

 The Search contract provides integration between an app and the Search charm. From

the charm users can search the current app as well as any others that support the

contract, easily viewing results from other apps without having to manually launch

them or switch to them. The search contract allows apps to also provide query

suggestions and result suggestions.

 File type and URI scheme associations are how Windows 8 apps can launch other apps.

The associations are declared in a supporting app’s manifest such that the app can be

launched to service the association. URI scheme associations are an excellent means for

an app to provide workflow services to others.

 Apps that implement the provider side of the file picker contract appear as choices

within the file picker UI. This is how apps can present data sources they manage as if

they were part of the local file system, even though they might exist in databases,

534

online services, or other such locations. To the user, the necessary transport

considerations are transparent, and through the cached file updater contract a provider

app can also handle synchronization of local and remote copies of the file.

 The contract for Contacts works similarly to the file picker but with information about

people. A consuming app can easily invoke the contact picker UI and any number of

provider apps can implement the other side of the contract to surface an address book,

database, or other source through that UI.

535

About the Author

Kraig Brockschmidt has worked with Microsoft since 1988,

focusing primarily on helping developers through writing,

education, public speaking, and direct engagement. Kraig is

currently a Senior Program Manager in the Windows Ecosystem

team working directly with key partners on building apps for

Windows 8 and bringing knowledge gained in that experience to

the wider developer community. His other books include Inside

OLE (two editions), Mystic Microsoft, The Harmonium Handbook,

and Finding Focus. His website is www.kraigbrockschmidt.com.

536

http://www.kraigbrockschmidt.com/

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

	Cover
	Copyright

	Contents
	Introduction
	Who This Book Is For
	What You'll Need
	A Formatting Note
	Acknowledgements
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Chapter 1: The Life Story of a WinRT App: Platform Characteristics of Windows 8
	Leaving Home: Onboarding to the Store
	Discovery, Acquisition, and Installation
	Playing in Your Own Room: The App Container
	Different Views of Life: View States and Resolution Scaling
	Those Capabilities Again: Getting to Data and Devices
	Taking a Break, Getting Some Rest: Process Lifecycle Management
	Remembering Yourself: App State and Roaming
	Coming Back Home: Updates and New Opportunities
	And, Oh Yes, Then There’s Design

	Chapter 2: Quickstart
	A Really Quick Quickstart: The Blank App Template
	Blank App Project Structure

	QuickStart #1: Here My Am! and an Introduction to Blend for Visual Studio
	Design Wireframes
	Create the Markup
	Styling in Blend
	Adding the Code
	Extra Credit: Receiving Messages from the iframe

	The Other Templates
	Fixed Layout Template
	Navigation Template
	Grid Template
	Split Template

	What We’ve Just Learned

	Chapter 3: App Anatomy and Page Navigation
	Local and Web Contexts within the App Host
	Sequential Async Operations: Chaining Promises
	Error Handling Within Promises: then vs. done
	Debug Output, Error Reports, and the Event Viewer

	App Activation
	Branding Your App 101: The Splash Screen and Other Visuals
	Activation Event Sequence
	Activation Code Paths
	WinJS.Application Events
	Extended Splash Screens

	App Lifecycle Transition Events and Session State
	Suspend, Resume, and Terminate
	Basic Session State in Here My Am!

	Data from Services and WinJS.xhr
	Handling Network Connectivity (in Brief)
	Tips and Tricks for WinJS.xhr

	Page Controls and Navigation
	WinJS Tools for Pages and Page Navigation
	The Navigation App Template, PageControl Structure, and PageControlNavigator
	The Navigation Process and Navigation Styles
	Optimizing Page Switching: Show-and-Hide

	Completing the Promises Story
	What We’ve Just Learned

	Chapter 4: Controls, Control Styling, and Data Binding
	The Control Model for HTML, CSS, and JavaScript
	HTML Controls
	WinJS stylesheets: ui-light.css, ui-dark.css, and win-* styles
	Extensions to HTML Elements

	WinJS Controls
	WinJS Control Instantiation
	Strict Processing and processAll Functions
	Example: WinJS.UI.Rating Control
	Example: WinJS.UI.Tooltip Control

	Working with Controls in Blend
	Control Styling
	Styling Gallery: HTML Controls
	Styling Gallery: WinJS Controls
	Some Tips and Tricks

	Custom Controls
	Custom Control Examples
	Custom Controls in Blend

	Data Binding
	Data Binding in WinJS
	Additional Binding Features

	What We’ve Just Learned

	Chapter 5: Collections and Collection Controls
	Collection Control Basics
	Quickstart #1: The HTML FlipView Control Sample
	Quickstart #2a: The HTML ListView Essentials Sample
	Quickstart #2b: The ListView Grouping Sample
	ListView in the Grid App Project Template

	The Semantic Zoom Control
	FlipView Features and Styling
	Data Sources
	A FlipView Using the Pictures Library
	Custom Data Sources

	How Templates Really Work
	Referring to Templates
	Template Elements and Rendering
	Template Functions (Part 1): The Basics

	ListView Features and Styling
	When Is ListView the Wrong Choice?
	Options, Selections, and Item Methods
	Styling
	Backdrops
	Layouts and Cell Spanning

	Optimizing ListView Performance
	Random Access
	Incremental Loading
	Template Functions (Part 2): Promises, Promises!

	What We’ve Just Learned

	Chapter 6: Layout
	Principles of WinRT app Layout
	Quickstart: Pannable Sections and Snap Points
	Laying Out the Hub
	Laying Out the Sections
	Snap Points

	The Many Faces of Your Display
	View States
	Screen Size, Pixel Density, and Scaling

	Adaptive and Fixed Layouts for Display Size
	Fixed Layouts and the ViewBox Control
	Adaptive Layouts

	Using the CSS Grid
	Overflowing a Grid Cell
	Centering Content Vertically
	Scaling Font Size

	Item Layout
	CSS 2D and 3D Transforms
	Flexbox
	Nested and Inline Grids
	Fonts and Text Overflow
	Multicolumn Elements and Regions

	What We’ve Just Learned

	Chapter 7: Commanding UI
	Where to Place Commands
	The App Bar
	App Bar Basics and Standard Commands
	App Bar Styling
	Command Menus
	Custom App Bars and Navigation Bars

	Flyouts and Menus
	WinJS.UI.Flyout Properties, Methods, and Events
	Flyout Examples
	Menus and Menu Commands

	Message Dialogs
	Improving Error Handling in Here My Am!
	What We’ve Just Learned

	Chapter 8: State, Settings, Files, and Documents
	The Story of State
	Settings and State
	App Data Locations
	AppData APIs (WinRT and WinJS)
	Using App Data APIs for State Management

	Settings Pane and UI
	Design Guidelines for Settings
	Populating Commands
	Implementing Commands: Links and Settings Flyouts
	Programmatically Invoking Settings Flyouts

	User Data: Libraries, File Pickers, and File Queries
	Using the File Picker
	The File Picker UI
	The File Picker API (and a Few Friends)

	Media Libraries
	Documents and Removable Storage
	Rich Enumeration with File Queries

	Here My Am! Update
	What We’ve Just Learned

	Chapter 9: Input and Sensors
	Touch, Mouse, and Stylus Input
	The Touch Language, Its Translations, and Mouse/Keyboard Equivalents
	What Input Capabilities Are Present?
	Unified Pointer Events
	Gesture Events
	The Gesture Recognizer

	Keyboard Input and the Soft Keyboard
	Soft Keyboard Appearance and Configuration
	Adjusting Layout for the Soft Keyboard
	Standard Keystrokes

	Inking
	Geolocation
	Sensors
	What We’ve Just Learned

	Chapter 10: Media
	Creating Media Elements
	Graphics Elements: Img, Svg, and Canvas (and a Little CSS)
	Additional Characteristics of Graphics Elements
	Some Tips and Tricks

	Video Playback and Deferred Loading
	Disabling Screen Savers and the Lock Screen During Playback
	Video Element Extension APIs
	Applying a Video Effect
	Browsing Media Servers

	Audio Playback and Mixing
	Audio Element Extension APIs
	Playback Manager and Background Audio
	Playing Sequential Audio

	Playlists
	Loading and Manipulating Media
	Media File Metadata
	Thumbnails
	Common File Properties
	Media-Specific Properties
	Media Properties in the Samples

	Image Manipulation and Encoding
	Transcoding and Custom Image Formats

	Manipulating Audio and Video
	Transcoding
	Custom Decoders/Encoders and Scheme Handlers

	Media Capture
	Flexible Capture with the MediaCapture Object
	Selecting a Media Capture Device

	Streaming Media and PlayTo
	Streaming from a Server and Digital Rights Management (DRM)
	Streaming from App to Network
	PlayTo

	What We Have Learned

	Chapter 11: Purposeful Animations
	Systemwide Enabling and Disabling of Animations
	The WinJS Animations Library
	Animations in Action

	CSS Animations and Transitions
	The Independent Animations Sample

	Rolling Your Own: Tips and Tricks
	What We’ve Just Learned

	Chapter 12: Contracts
	Share
	Source Apps
	Target Apps
	The Clipboard

	Search
	Search in the App Manifest and the Search Item Template
	Basic Search and Search Activation
	Providing Query Suggestions
	Providing Result Suggestions
	Type to Search

	Launching Apps: File Type and URI Scheme Associations
	File Activation
	Protocol Activation

	File Picker Providers
	Manifest Declarations
	Activation of a File Picker Provider

	Cached File Updater
	Updating a Local File: UI
	Updating a Remote File: UI
	Update Events

	Contacts
	Using the Contact Picker
	Contact Picker Providers

	What We’ve Just Learned

	About the Author
	Survey: What do you think of this eBook?

